
 

BASIC CONCEPTS 

AND 

CONVENTIONAL METHODS 

OF 

STUCTURAL ANALYSIS 
(LECTURE NOTES) 

 

 

 

 

 

 

 

DR. MOHAN KALANI 
(Retired Professor of Structural Engineering) 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

DEPARTMENT OF CIVIL ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY (BOMBAY) 
POWAI, MUMBAI – 400 076, INDIA 

 

 

 

 

WWW.ENGGROOM.COM DOWNLOADED FROM WWW.ENGGROOM.COM

FOR MORE STUDY MATERIALS AND PROJECT VISIT WWW.ENGGROOM.COM



ACKNOWLEDGEMENTS 
 

 

I realize the profound truth that He who created all things inert as well as live is 

GOD. But many things in this world are created through knowledge of some living 

beings and these living beings are groomed by their teachers and through their own effort 

of self study and practice. 

 

 Those who are gifted by God are exceptions and those who are gifted by their 

teachers are lucky. I am thankful to God as He has been grateful to me much more than I 

deserve and to my all teachers from school level to University heights as I am product of 

their efforts and guidance and hence this work. 

 

 It is not out of place to mention some names that did excellent job of teaching and 

showed path to learning, teaching and research. Mr. Sainani of Baba Thakurdas Higher 

Secondary School, Lucknow, India did excellent job of teaching of mathematics at school 

level. Mr. Tewarson of Lucknow Christian College, Lucknow, India was an excellent 

teacher of mathematics at college level. Professor Ramamurty taught theory of Structures 

excellently at I.I.T. Kharagpur, India. Visiting Professor Paul Andersen from U.S.A. 

demonstrated the techniques of teaching through his very well prepared lectures and 

course material on Structural Mechanics, Soil Mechanics and his consultancy practice. 

Visiting Professor Gerald Picket taught Advanced Theory of Elasticity, Plates and shells. 

It was a rare opportunity to be their student during Master of Engineering Course of 

Calcutta University at Bengal Engineering College, Howrah, India. 

 

 During my Ph.D. programme at Leningrad Plytechnic Institute, Leningrad (St. 

Petersberg), Russia, Professor L.A. Rozin, Head of Department of Structural Mechanics 

and Theory of Elasticity presented lectures and course material on Matrix Methods of 

Finite Element Analysis excellently.  

 

The present work is the result of inspirations of my teachers and also any future 

work that I may accomplish. 

 

Last but not the least, I express my gratitude to Professor Tarun Kant, Present 

Dean  (Planning)  I.I.T.  Powai, Mumbai India   and Ex.  Head   of   Civil    Engineering  

Department who extended the facility of putting this work on web site of I.I.T. Powai, 

Mumbai, India. Also I thank present Head of Civil engineering Department, I.I.T. Powai, 

India. Professor G.Venkatachalam who whole heatedly extended the facility of typing 

this manuscript in the departmental library by Mrs. Jyoti Bhatia and preparation of 

figures in the drawing office by Mr. A.J. Jadhav and Mr. A.A. Hurzuk. 

 

 Above all I am thankful to Professor Ashok Misra, Director of I.I.T. Powai, 

Mumbai, India who has a visionary approach in the matters of theoretical and practical 

development of knowledge hence, the I.I.T. employees in service or retired get the 

appropriate support from him in such matters. He has the plans to make I.I.T. Powai the 

best institute in the world. 

WWW.ENGGROOM.COM DOWNLOADED FROM WWW.ENGGROOM.COM

FOR MORE STUDY MATERIALS AND PROJECT VISIT WWW.ENGGROOM.COM



 

The inspiration and knowledge gained from my teachers and literature have 

motivated me to condense the conventional methods of structural analysis in this work so 

that a reader can get the quick insight into the essence of the subject of Structural 

Mechanics. 

 

In the end I wish to acknowledge specifically the efforts of Mrs. Jyoti Bhatia, who 

faithfully, sincerely and conscientiously typed the manuscript and perfected it as far as 

possible by reviewing and removing the errors.  

 

 Finally I thank Sri Anil Kumar Sahu who scanned all the figures and integrated 

the same with the text and arranged the entire course material page wise. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WWW.ENGGROOM.COM DOWNLOADED FROM WWW.ENGGROOM.COM

FOR MORE STUDY MATERIALS AND PROJECT VISIT WWW.ENGGROOM.COM



REFERENCES 
 

1. Andersen P. Statically Indeterminate Structures. The Ronald Press Company, New 

York, U.S.A, 1953. 

 

2. Darkov A & Kuznetsov V. Structural Mechanics. Mir Publishers, Moscow, Russia. 

 

3. Junnarkar S.B. Mechanics of Structures, Valumes I & II. Chartor Book Stall, Anand, 

India. 

 

4. Mohan Kalani. Analysis of continuous beams and frames with bars of variable cross-

section. I. Indian Concrete Journal, March 1971. 

 

5. Mohan Kalani. Analysis of continuous beams and frames with bars of variable cross-

section :2. Indian Concrete Journal, November 1971. 

 

6. Norris C.H., Wilbur J.B & Utku S. Elementary Structural Analysis. McGraw – Hill 

Book Company, Singapore. 

 

7. Raz Sarwar Alam. Analytical Methods in Structural Engineering. Wiley Eastern 

Private Limited, New Delhi, India. 

 

8. Timoshenko S.P & Young D.H. Theory of Structures. McGraw – Hill Kogakusha 

Ltd., Tokyo, Japan. 

 

9. Vazirani V.N. & Ratwani M.M. Analysis of Structures, Khanna Publishers, Delhi, 

India. 

 

10. West H.H. Analysis of Structures. John Wiley & Sons, New York, USA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WWW.ENGGROOM.COM DOWNLOADED FROM WWW.ENGGROOM.COM

FOR MORE STUDY MATERIALS AND PROJECT VISIT WWW.ENGGROOM.COM



 

CONTENTS 
 

 

CHAPTER TOPIC        PAGE NO 

 

 

1.  INTRODUCTION                   1 

 

2.                   CLASSIFICATION OF SKELEAL 

OR FRAMED STRUCTURES                  1 

 

3.                   INTERNAL LOADS DEVELOPED IN 

  STRUCTURAL MEMBERS            2 

 

4.  TYPES OF STRUCTURAL LOADS           3 

 

 

5.   DTERMINATE AND INDETERMINATE          4 

  STRUCTURAL SYSTEMS 

 

6.  INDETERMINACY OF STRUCTURAL SYSTEM         7 

 

7.  FLEXIBILITY AND STIFFNESS METHODS       11 

 

8. ANALYSIS OF STATICALLY DETERMINATE  

STRUCTURES          12 

 

9.  ANALYSIS OF DETERMINATE TRUSSES      16 

 

10.  CABLES AND ARCHES         25 

 

11.                   INFLUENCE LINES FOR DETERMINATE  

STRUCTURES          32 

 

12.  DEFLECTION OF STRUCTURES        37 

 

13.  NONPRISMATIC MEMBERS        49 

 

14.  SLOPE DEFLECTION EQUATIONS       54 

 

15.  MOMENT DISTRIBUTION METHOD       58 

 

 

 

 

WWW.ENGGROOM.COM DOWNLOADED FROM WWW.ENGGROOM.COM

FOR MORE STUDY MATERIALS AND PROJECT VISIT WWW.ENGGROOM.COM



 

 

16. ANALYSIS OF CONTINUOUS BEAMS AND 

PLANE FRAMES CONSISTING OF PRISMATIC 

AND NONPRISMATIC MEMBERS       69 

 

17.  ANALYSIS OF INDETERMINATE TRUSSES      79 

 

18.                  APPROXIMATE METHODS OF ANALYSIS OF 

STATICALLY INDETERMINATE STRUCTURES     89 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WWW.ENGGROOM.COM DOWNLOADED FROM WWW.ENGGROOM.COM

FOR MORE STUDY MATERIALS AND PROJECT VISIT WWW.ENGGROOM.COM



LECTURE NOTES ON STRUCTURAL ANALYSIS 
 

BY DR. MOHAN KALANI 

RETIRED PROFESSOR OF STRUCTURAL ENGINEERING 

CIVIL ENGINEERING DEPARTMENT 

INDIAN INSTITUTE OF TECHNOLOGY, 

MUMBAI-400 076, INDIA 

 

BASIC CONCEPTS  AND CONVENTIONAL METHODS OF STRUCTURAL 

ANALYSIS 

 

1 INTRODUCTION 

 

The structural analysis is a mathematical algorithm process by which the response of a 

structure to specified loads and actions is determined. This response is measured by 

determining the internal forces or stress resultants and displacements or deformations 

throughout the structure. 

 

The structural analysis is based on engineering mechanics, mechanics of solids, 

laboratory research, model and prototype testing, experience and engineering judgment. 

The basic methods of structural analysis are flexibility and stiffness methods. The 

flexibility method is also called force method and compatibility method. The stiffness 

method is also called displacement method and equilibrium method. These methods are 

applicable to all type of structures; however, here only skeletal systems or framed 

structures will be discussed. The examples of such structures are beams, arches, cables, 

plane trusses, space trusses, plane frames, plane grids and space frames. 

 

The skeletal structure is one whose members can be represented by lines possessing 

certain rigidity properties. These one dimensional members are also called bar members 

because their cross sectional dimensions are small in comparison to their lengths. The 

skeletal structures may be determinate or indeterminate. 

 

2 CLASSIFICATIONS OF SKELETAL OR FRAMED STRUCTURES 

 

They are classified as under. 

 

1) Direct force structures such as pin jointed plane frames and ball jointed space 

frames which are loaded and supported at the nodes. Only one internal force or 

stress resultant that is axial force may arise. Loads can be applied directly on the 

members also but they are replaced by equivalent nodal loads. In the loaded 

members additional internal forces such as bending moments, axial forces and 

shears are produced.  

 

The plane truss is formed by taking basic triangle comprising of three members and three 

pin joints and then adding two members and a pin node as shown in Figure 2.1. Sign 
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Convention for internal axial force is also shown. In Fig.2.2, a plane triangulated truss 

with joint and member loading is shown. The replacement of member loading by joint 

loading is shown in Fig.2.3. Internal forces developed in members are also shown. 

 

The space truss is formed by taking basic prism comprising of six members and four ball 

joints and then adding three members and a node as shown in Fig.2.4. 

 

2) Plane frames in which all the members and applied forces lie in same plane as 

shown in Fig.2.5. The joints between members are generally rigid. The stress 

resultants are axial force, bending moment and corresponding shear force as shown 

in Fig.2.6.  

3) Plane frames in which all the members lay in the same plane and all the applied 

loads act normal to the plane of frame as shown in Fig.2.7. The internal stress 

resultants at a point of the structure are bending moment, corresponding shear force 

and torsion moment as shown in Fig.2.8. 

4) Space frames where no limitations are imposed on the geometry or loading in 

which maximum of six stress resultants may occur at any point of structure namely 

three mutually perpendicular moments of which two are bending moments and one 

torsion moment and three mutually perpendicular forces of which two are shear 

forces and one axial force as shown in figures 2.9 and 2.10. 

 

3 INTERNAL LOADS DEVELOPED IN STRUCTURAL MEMBERS 

 

External forces including moments acting on a structure produce at any section along a 

structural member certain internal forces including moments which are called stress 

resultants because they are due to internal stresses developed in the material of member.  

 

The maximum number of stress resultants that can occur at any section is six, the three  

Orthogonal moments and three orthogonal forces. These may also be described as the 

axial force F1 acting along x – axis of member, two bending moments F5 and F6 acting 

about the principal y and z axes respectively of the cross section of the member, two 

corresponding shear forces F3 and F2 acting along the principal z and y axes respectively 

and lastly the torsion moment F4 acting about x – axis of member. The stress resultants at 

any point of centroidal axis of member are shown in Fig. 3.1 and can be represented as 

follows. 
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Numbering system is convenient for matrix notation and use of electronic computer. 

Each of these actions consists essentially of a pair of opposed actions which causes 

deformation of an elemental length of a member. The pair of torsion moments cause twist 

of the element, pair of bending moments cause bending of the element in corresponding 

plane, the pair of axial loads cause axial deformation in longitudinal direction and the 

pair of shearing forces cause shearing strains in the corresponding planes. The pairs of 

biactions are shown in Fig.3.2. 

 

Primary and secondary internal forces. 

 

In many frames some of six internal actions contribute greatly to the elastic strain energy 

and hence to the distortion of elements while others contribute negligible amount. The 

material is assumed linearly elastic obeying Hooke’s law. In direct force structures axial 

force is primary force, shears and bending moments are secondary. Axial force structures  

do not have torsional resistance. The rigid jointed plane grid under normal loading has 

bending moments and torsion moments as primary actions and axial forces and shears are 

treated secondary. 

 

In case of plane frame subjected to in plane loading only bending moment is primary 

action, axial force and shear force are secondary. In curved members bending moment, 

torsion and thrust (axial force) are primary while shear is secondary. In these particular 

cases many a times secondary effects are not considered as it is unnecessary to 

complicate the analysis by adopting general method. 

 

4 TYPES OF STRUCTURAL LOADS 

 

For the analysis of structures various loads to be considered are: dead load, live load, 

snow load, rain load, wind load, impact load, vibration load, water current, centrifugal 

force, longitudinal forces, lateral forces, buoyancy force, earth or soil pressure, 

hydrostatic pressure, earthquake forces, thermal forces, erection forces, straining forces 

etc. How to consider these loads is described in loading standards of various structures. 

These loads are idealized for the purpose of analysis as follows. 
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Concentrated loads:  They are applied over a small area and are idealized as point loads. 

 

Line loads: They are distributed along narrow strip of structure such as the wall load or 

the self weight of member. Neglecting width, load is considered as line load acting along 

axis of member. 

 

Surface loads: They are distributed over an area. Loads may be static or dynamic, 

stationary or moving. Mathematically we have point loads and concentrated moments. 

We have distributed forces and moments, we have straining and temperature variation 

forces. 

 

5   DETERMINATE AND INDETERMINATE STRUCTURAL SYSTEMS 

 

If skeletal structure is subjected to gradually increasing loads, without distorting the 

initial geometry of structure, that is, causing small displacements, the structure is said to 

be stable. Dynamic loads and buckling   or instability of structural system are not 

considered here. If for the stable structure it is possible to find the internal forces in all 

the members constituting the structure and supporting reactions at all the supports 

provided from statical equations of equilibrium only, the structure is said to be 

determinate. If it is possible to determine all the support reactions from equations of 

equilibrium alone the structure is said to be externally determinate else externally 

indeterminate. If structure is externally determinate but it is not possible to determine all 

internal forces then structure is said to be internally indeterminate. Therefore a structural 

system may be: 

 

(1) Externally indeterminate but internally determinate 

(2) Externally determinate but internally indeterminate 

(3) Externally and internally indeterminate  

(4) Externally and internally determinate 

These systems are shown in figures 5.1 to 5.4. 

A system which is externally and internally determinate is said to be determinate system. 

 

A system which is externally or internally or externally and internally indeterminate is 

said to be indeterminate system. 

 

Let: v = Total number of unknown internal and support reactions 

 

s = Total number of independent statical equations of equilibrium. 
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Then if: v = s  the structure is determinate 

    v > s  the structure is indeterminate 

    v < s  the structure is unstable 

Total indeterminacy of structure = Internal indeterminacy + External indeterminacy 

 

Equations of equilibrium 

 

Space frames arbitrarily loaded 

  

∑Fx = 0 ∑Mx = 0 

∑Fy = 0 ∑My = 0 

∑Fz = 0 ∑Mz = 0 

 

For space frames number of equations of equilibrium is 6. Forces along three orthogonal 

axes should vanish and moments about three orthogonal axes should vanish. 

 

Plane frames with in plane loading 

 

∑Fx = 0 ∑Fy = 0 ∑Mz = 0 

 

There are three equations of equilibrium. Forces in x and y directions should vanish and 

moment about z axis should vanish. 

  

Plane frames with normal to plane loading  

 

There are three equations of equilibrium. 

 

∑Fy = 0, ∑Mx = 0, ∑Mz = 0 

Sum of forces in y direction should be zero. Sum of moments about x and z axes be zero. 

 

Release and constraint 

 

A release is a discontinuity which renders a member incapable of transmitting a stress 

resultant across that section. There are six releases corresponding to the six stress 

resultants at a section as shown below by zero elements in the vectors. Various releases 

are shown in figures 5.5 to 5.12. 
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Release for Axial Force (AF) Fx: 
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Release for Shear Force (SF) Fy: 
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Release for Shear Force (SF) Fz: 

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

z

y

x

y

x

M

M

M

0

F

F

 

 

 

Release for Torsion Moment (TM) Mx:
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Release for Bending Moment (BM) My:
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Release for Bending Moment (BM) Mz:
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The release may be represented by zero elements of forces 

 

Universal joint (Ball and socket joint) F = 
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A release does not necessarily occur at a point, but may be continuous along whole length 

of member as in chain for BM. On the other hand a constraint is defined as that which 

prevents any relative degree of freedom between two adjacent nodes connected by a 

member or when a relative displacement of the nodes does not produce a stress resultant 

in the member. 

 

6 INDETERMINACY OF STRUCTURAL SYSTEM 

 

The indeterminacy of a structure is measured as statical (∝ s) or kinematical (∝ k) 

indeterminacy. 

 

∝ s = P (M – N + 1) – r = PR – r 

 

∝ k = P (N – 1) + r – c 
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∝ s + ∝ k = PM –c 

 

P = 6 for space frames subjected to general loading  

 

P = 3 for plane frames subjected to in plane or normal to plane loading. 

 

N = Number of nodes in structural system. 

 

M = Number of members of completely stiff structure which includes foundation as 

singly connected system of members. In completely stiff structure there is no release 

present. In singly connected system of rigid foundation members there is only one route 

between any two points in which tracks are not retraced. The system is considered 

comprising of closed rings or loops. 

 

R = Number of loops or rings in completely stiff structure. 

 

r = Number of releases in the system. 

 

c = Number of constraints in the system. 

 

R = (M – N + 1) 

 

For plane and space trusses ∝ s reduces to: 

 

∝ s = M  - (NDOF) N  + P 

 

M  = Number of members in completely stiff truss. 

 

P = 6 and 3 for space and plane truss respectively 

 

N = Number of nodes in truss. 

 

NDOF = Degrees of freedom at node which is 2 for plane truss and 3 for space truss. 

 

For space truss ∝ s = M  - 3 N  + 6 

 

For plane truss ∝ s =  M  - 2  N  + 3 

 

Test for static indeterminacy of structural system 

 

If   ∝ s > 0  Structure is statically indeterminate 
 

If    ∝ s = 0  Structure is statically determinate 
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and if ∝ s < 0  Structure is a mechanism. 

 

It may be noted that structure may be mechanism even if ∝ s > 0 if the releases are 

present in such a way so as to cause collapse as mechanism. The situation of mechanism 

is unacceptable. 

 

Statical Indeterminacy 

 

It is difference of the unknown forces (internal forces plus external reactions) and the 

equations of equilibrium. 

 

Kinematic Indeterminacy 

 

It is the number of possible relative displacements of the nodes in the directions of stress 

resultants. 

 

Computation of static and kinematic indeterminacies 

 

It is possible to compute mentally the static and kinematic inderminacies of structures. 

Consider a portal frame system shown in Fig.6.1. It is space structure with five members 

and three clamps at foundation. There is one internal space hinge in member BC.  

Foundation is replaced with two stiff members to give entire system as shown in Fig.6.2. 

So we have completely stiff structure with seven members and forms two rings which are 

statically indeterminate to twelve degrees as shown in Fig.6.3. There are three releases in 

member BC because of ball and socket (universal) joint. Three moments are zero at this 

section. Therefore ∝ s = 9. There are three joints E, B and C which can move. Being 

space system degree of freedom per node is 6. There will be three rotations at universal 

joint. Therefore total dof is (3 x 6 + 3) or ∝ k = 21. Joints F, A and D can not have any 

displacement that is degree of freedom is zero at these nodes. 

 

Using formula:  

 

∝ s = P (M – N + 1) – r 

 

∝ k = P (N – 1) + r – c 

 

P = 6, M = 7, N = 6 

 

c = 12 (Foundation members are rigid), r = 3 

 

∝ s = P (M – N + 1) – r = 6 (7 – 6 + 1) – 3 = 9 

 

∝ k = P (N – 1) + r – c = 6 (6 – 1) + 3 – 12 = 21 
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∝ s + ∝ k = PM – c = 6 x 7 – 12 = 30 

 

Static indeterminacy can also be determined by introducing releases in the system and 

rendering it a stable determinate system. The number of biactions corresponding to 

releases will represent static indeterminacy. Consider a portal frame fixed at support 

points as shown in Fig.6.4. The entire structure is shown in Fig.6.5 and completely stiff 

structure in Fig.6.6. 

 

∝ s = P (M – N + 1) – r 

 

∝ k = P (N – 1) + r – c 

 

P = 3, M = 4, N = 4, c = 3, r = 0 

 

∝ s = 3 (4 – 4 + 1) – 0 = 3 

 

∝ k = 3 (4 – 1) + 0 – 3 = 6 

 

∝ s + ∝ k = 3 + 6 = 9 

 

The structure can be made determinate by introducing in many ways three releases and 

thus destroying its capacity to transmit internal forces X1, X2, X3 at the locations of 

releases. 

 

In figure 6.7. a cut is introduced just above clamp D that is clamp is removed. It becomes 

tree or cantilever structure with clamp at A. At this cut member was transmitting three 

forces X1, X2 and X3 (Two forces and one moment). Therefore ∝ s = 3. This is external 

static indeterminacy. 

 

In figure 6.8. a cut is introduced at point R on member BC. We have two trees or 

cantilevers with clamps at A and D. We have three internal unknown forces X1, X2, and 

X3. Thus ∝ s = 3. 

 

In figure 6.9. three hinges are introduced. We have determinate and stable system and 

there are three unknown moments X1, X2 and X3. Thus ∝ s = 3. 

 

In figure 6.10. one roller cum hinge and one hinge is introduced. We have one unknown 

force X1 and two unknown moments X2 and X3 at these releases. Thus ∝ s = 3. 

 

The static and kinematic indeterminacies of a few structures are computed in Table 1.  
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TABLE 1. Examples on static and kinematic indeterminacies. 

 

 

Example 

No: 

Figure 

No: 

P M N R c r ∝ s ∝ k 

1 6.11 3 4 3 2 6 3 3 3 

2 6.12 3 2 2 1 5 2 1 0 

3 6.13 3 2 2 1 3 1 2 1 

4 6.14 3 12 9 4 6 2 10 20 

5 6.15 3 7 6 2 3 3 3 15 

6 6.16 3 12 6 7 25 19 2 9 

7 6.17 3 13 6 8 28 20 4 7 

8 6.18 3 6 

14 

2 

10 

5 

5 

0 

24 

0 

0 

15 

15 

3 

3 

9 6.19 6 9 7 3 12 0 18 24 

10 6.20 3 4 3 2 6 6 0 5 

 

 

7 FLEXIBILITY AND STIFFNESS METHODS 

 

These are the two basic methods by which an indeterminate skeletal structure is analyzed. 

In these methods flexibility and stiffness properties of members are employed. These 

methods have been developed in conventional and matrix forms. Here conventional 

methods are discussed. 

 

Flexibility Method 

 

The given indeterminate structure is first made statically determinate by introducing 

suitable number of releases. The number of releases required is equal to statical 

indeterminacy ∝ s. Introduction of releases results in displacement discontinuities at these 

releases under the externally applied loads. Pairs of unknown biactions (forces and 

moments) are applied at these releases in order to restore the continuity or compatibility 

of structure. The computation of these unknown biactions involves solution of linear  

simultaneous equations. The number of these equations is equal to statical indeterminacy 

∝ s.  After the unknown biactions are computed all the internal forces can be computed in 

the entire structure using equations of equilibrium and free bodies of members. The 

required displacements can also be computed using methods of displacement 

computation. 
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In flexibility method since unknowns are forces at the releases the method is also called 

force method. Since computation of displacement is also required at releases for 

imposing conditions of  compatibility the method is also called compatibility method. In 

computation of displacements use is made of flexibility properties, hence, the method is 

also called flexibility method. 

 

Stiffness Method 

 

The given indeterminate structure is first made kinematically determinate by introducing 

constraints at the nodes. The required number of constraints is equal to degrees of 

freedom at the nodes that is kinematic indeterminacy ∝ k. The  kinematically determinate 

structure comprises of fixed ended members, hence, all nodal  displacements are zero. 

These results in  stress resultant discontinuities at these nodes under the action of applied 

loads or in other words the clamped joints are not in equilibrium. In order to restore the 

equilibrium of stress resultants at the nodes the nodes are imparted  suitable unknown 

displacements. The number of simultaneous equations representing joint equilibrium of 

forces is equal to kinematic indeterminacy ∝ k. Solution of these equations  gives 

unknown nodal displacements. Using stiffness properties of members the member end 

forces are computed and hence the internal forces throughout the structure. 

 

Since nodal displacements are unknowns, the method is also called displacement method. 

Since equilibrium conditions are applied at the joints the method is also called 

equilibrium method. Since stiffness properties of members are used the method is also 

called stiffness method. 

 

8  ANALYSIS OF STATICALLY DETERMINATE STRUCTURES 

 

Following are the steps for analyzing  statically determinate structures. 

 

(1) Obtain the reactions at the supports of structure  applying appropriate equations of 

equilibrium. 

 

(2) Separate the members at the joints as free bodies and  apply equations of equilibrium 

to each member to obtain member end forces. 

 

(3) Cut the member at a section where internal forces are required. Apply equations of 

equations to any of the two segments to compute unknown forces at this section. 

 

Example 8.1 

 

Compute reactions for the beam AB loaded as shown in figure 8.1. Also find internal 

forces at mid span section C. 
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Detach the beam from supports and show unknown reactions as shown in Fig.8.2 

 

The reaction RB which is perpendicular to rolling surface is replaced with its horizontal 

and vertical components RBX and BBY. 

 

 RBX  =  RB Sin θ = 
5

3
 RB, RBY = RB Cos θ =  

5

4
 RB 

 

At A reaction in vertical direction is zero and other components are RAX and MAZ. 

Resultant of triangular load W is shown acting at 8m from A and 4m  from B that is 

through CG of triangular loading. The free body diagram with known forces is shown in 

Fig.8.3. 

  

W = 
2

1
 x 50 x 12 = 300 kN 

 

The equations of equilibrium for the member are: 

 

 ∑ Fx = 0, ∑ Fy = 0 and  ∑ Mz = 0 

 

Alternatively, ∑ Fx = 0, ∑
A

zM = 0, ∑
B

zM = 0 

∑ Fx = 0 gives : RAX = RBX 

 

 ∑ Fy = 0 gives : RBY = 300 kN 

 

∑
B

zM = 0 gives : MAZ = 4 x 300 = 1200 kNm 

 

 ∑
A

zM = 0 gives : 12 RBY = 8 x 300 + MAZ, RBY =  
12

1200  2400 +
 = 300 (check) 

 

 RB = 
4

5
 x 300 = 375, RBX = 

5

3
 x 375 = 225. 

 

Now the beam is cut at mid span and left segment is considered as a free body. 

 

The free body diagram of segment AC with unknown forces is shown in Fig.8.4. 

 

Total triangular load = 
2

1
 x 6 x 25 = 75 kN. It acts at 4m from A and 2m from C. 
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∑ Fx = 0 gives, RCX = 225 kN 

 

∑ Fy = 0 gives, RCY = 75 kN 

 

 ∑
C

zM = 0 gives, MCZ = 1200 – 75 x 2 = 1050 kNm 

 

Example 8.2 

 

Determine the reactions for the three hinged arched frame ABC loaded as shown in Fig. 

8.5. Show free body  diagrams for members AB and BC and segments BD and DC. 

 

We have three equations of equilibrium and four unknown reactions. The structure is 

determinate despite four unknown reactions as the moment at hinge B is zero. The free 

body diagrams of members AB and BC are shown in Fig.8.6 and Fig.8.7. 

 

The equations of equilibrium of free body AB are 

 

∑ Fx = 0,  RAX – RBX = 0 ……….  (1) 

 

∑ Fy = 0, RAY + RBY = 40 ………  (2) 

 

 ∑
A

zM = 0, 3 RBX + 4 RBY = 40 x 2.5 = 100 ……… (3) 

 

The equations of equilibrium of free body BC are : 

 

∑ Fx = 0,  RBX + RCX = 5 ……….  (4) 

 

∑ Fy = 0, - RBY + RCY = 10 ……….  (5) 

 

∑
C

zM = 0, 4 RBX - 3 RBY =  - 25 + 10 x 1.5 + 5 x 2 = 0 ………  (6) 

 

These equations are solved for the unknown forces. 

 

 Eqn (3) x 4, 12 RBX + 16 RBY = 400 …….. (7) 

 

 Eqn (6) x 3, 12 RBX - 9 RBY = 0       ……... (8) 

 

 Eqn (7) – Eqn (8), 25 RBY = 400,  RBY = 16 
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From (2), RAY = 40 – 16 = 24 

 

From (7), RBX = 
12

1
 [400 – 16 x 16] = 

12

144
 = 12 

 

From (8), RBX = 
12

16 x 9
 = 12 (check) 

 

From (1), RAX = 12 

 

From (4), RCX = 5 – 12 = - 7  

 

From (5), RCY = 10 + 16 = 26 

 

The free body diagrams of members AB and BC with known forces are shown in Figures 

8.8 and 8.9. 

 

Member BDC is shown horizontally and the forces are resolved along the axis of member 

(suffix H) and normal to it (suffix V) as shown in figure 8.10. 

 

At B : RBH = 12 cos θ + 16 sin θ = 12 x 
5

3
 + 16 x 

5

4
 = 20 

 

RBV = 12 sin θ - 16 cos θ = 12 x 
5

4
 - 16 x 

5

3
 = 0 

 

At D : RDH = 10 sin θ - 5 cos θ = 10 x 
5

4
 - 5 x 

5

3
 = 5 

 

RDV = - 5 sin θ - 10 cos θ = - 5 x 
5

4
 - 10 x 

5

3
 = - 10 

 

At C : RCH =  +7 cos θ + 26 sin θ = + 7 x 
5

3
 + 26 x 

5

4
 = + 25 

 

RCV = - 7 sin θ + 26 cos θ = - 7 x 
5

4
 + 26 x 

5

3
 = 10 

 

It can easily be verified that equations of equilibrium are satisfied in this configuration. 

By cutting the member just to left of D the free body diagrams of segments are shown in 

Fig. 8.11. 
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9  ANALYSIS OF DETERMINATE TRUSSES 

 

The trusses are classified as determinate and indeterminate. They are also classified as 

simple, compound and complex trusses. We have plane and space trusses. The joints of 

the trusses are idealized for the purpose of analysis. In case of plane trusses the joints are 

assumed to be hinged or pin connected. In case of space trusses ball and socket joint is 

assumed  which  is  called universal joint. If  members  are  connected to a  hinge in a 

plane or universal joint in space, the system is equivalent to m members rigidly 

connected at the node with hinges or socketed balls in (m-1) number of  members at the 

nodes as shown in figure 9.1. In other words it can be said that the members are allowed 

to rotate freely at the nodes. The degree of freedom at node is 2 for plane truss (linear 

displacements in x and y directions) and 3 for space truss (linear displacements in x,y and 

z directions). The plane truss requires supports equivalent of three reactions and 

determinate space truss requires supports equivalent of six reactions in such a manner 

that supporting  system  is  stable  and  should  not  turn into  a  mechanism. For this  it  is  

essential that reactions should not be concurrent and parallel so that system will not rotate 

and move. As regards loads they are assumed to act on the joints or points of concurrency 

of members. If load is acting on member it is replaced with equivalent loads applied to 

joints to which it is connected. Here the member discharges two functions that is function 

of direct force member in truss and flexural member to transmit its load to joints. For this 

member the two effects are combined to obtain final internal stress resultants in this 

member. 

 

The truss is said to be just rigid or determinate if removal of any one member destroys its 

rigidity and turns it into a mechanism. It is said to be over rigid or indeterminate if 

removal of member does not destroy its rigidity. 

 

Relation between number of members and joints for just rigid truss. 

 

 Let m = Number of members and  j = Number of joints 

Space truss 

 

Number of equivalent links or members or reactive forces to constrain the truss in space 

is 6 corresponding to equations of equilibrium in space (∑ Fx = 0, ∑ Fy = 0, ∑ FZ = 0, 

∑ Mx = 0, ∑ My = 0, ∑ MZ = 0). For ball and socket (universal) joint the minimum 

number of links or force components for support or constraint of joint in space is 3 

corresponding to equations of equilibrium of concurrent system of forces in space (∑ Fx 

= 0, ∑ Fy = 0, ∑ FZ = 0). Each member is equivalent to one link or force. 

 

Total number of links or members or forces which support j  number of joints in space 

truss is (m + 6). Thus total number of unknown member forces and reactions is (m + 6). 

The equations of equilibrium corresponding to j number of joints is 3j. Therefore for 

determinate space truss system: (m + 6) = 3j. 
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 m = (3j – 6)  

 

Minimum just rigid or stable space truss as shown in Fig.9.2.  is a tetrahedron for which 

m = 6 and j = 4. For this relation between members and joints is satisfied. 

 

 m = 3 x 4 – 6 = 6 (ok) 

 

By adding one node and three members the truss is expanded which can be supported on 

support system equivalent of six links or forces neither parallel nor concurrent. We get 

determinate and stable system. As can be seen joints 5 and 6 are added to starting stable 

and just rigid tetrahedron truss. Three links at each of two joints 3 and 6 corresponding to 

ball and socket joint are provided. 

 

Plane truss 

 

The stable and just rigid or determinate smallest plane truss as shown in Fig.9.3. 

comprises of a triangle with three nodes and three members. Two members and a pin 

joint are added to expand the truss. Total number of non-parallel and non-concurrent 

links or reactive forces required to support j number of joints is 3. Total number of 

unknowns is number of  member forces and reactions at the supports. Number of  

available equations is 2j. Therefore for determinate plane truss system:    

 

 (m + 3) = 2j 

 

 m = (2j – 3) 

 

Hinge support is equivalent of two reactions or links and roller support is equivalent of 

one reaction or link. 

 

Exceptions 

 

Just rigid or simple truss is  shown in figure 9.4, m = 9,  j = 6, m = (2j – 3) = (2 x 6 – 3) = 

9. The member no 6 is removed and connected to joints 2 and 4. As can be seen in figure 

9.5. the condition of m = (2j – 3) is satisfied but configuration of truss can not be 

completed by starting with a triangle and adding two members and a joint. The system is 

mechanism and it is not a truss. 

 

The stable and just rigid or determinate truss is shown in figure 9.6, m = 9, j = 6, m = 2 j 

– 3 = 2 x 6 – 3 = 9. The relation between members and joints will also be satisfied if 

arched part is made horizontal as shown in Fig.9.7. The system has partial constraint at C 

as there is nothing to balance vertical force at pin C. The two members must deflect  to 

support vertical load at C. In fact the rule for forming determinate simple truss is violated 

as joint 1 is formed by members 1 and 2 by putting them along same line because these 

are the only two members at that joint. 

WWW.ENGGROOM.COM DOWNLOADED FROM WWW.ENGGROOM.COM

FOR MORE STUDY MATERIALS AND PROJECT VISIT WWW.ENGGROOM.COM



-18- 

 

Compound truss 

 

Compound plane truss is formed by joining together two simple plane trusses by three 

nonparallel and nonconcurrent members or one hinge and the member. Compound truss 

shown in figure 9.8 is formed by combining two simple trusses ABC and CDE by hinge 

at C and member BE. It is shown supported at A and B. For purpose of analysis after 

determining reactions at supports the two trusses are separated and unknown forces X1, 

X2 and X3 are determined by applying equations of equilibrium to any one part. There- 

after each part is analyzed as simple truss. This is shown in Fig.9.9. 

 

Compound truss shown in figure 9.10 is formed by combining the two simple trusses by 

three nonparallel and nonconcurrent members. The truss is supported by two links 

corresponding to hinge support at A and one link corresponding to roller at B. By cutting 

these three members the two parts are separated and the unknown forces X1, X2 and X3 in 

these members are determined by equations of equilibrium and each part is analyzed as 

simple truss. This is shown in Fig.9.11. 

 

In case of compound space truss six members will be required to connect two simple 

space trusses in stable manner so that connecting system does not turn into a mechanism. 

Alternatively one common universal ball and socket joint and three members will be 

required. The method of analysis will be same as in plane truss case. 

 

Complex truss 

 

A complex truss is one which satisfies the relation between number of members and 

number of joints but can not be configured by rules of forming simple truss by starting 

with triangle or tetrahedron and then adding two members or three members and a node 

respectively for plane and space truss. A complex truss is shown in figure 9.12. 

 

 M = 9, j = 6, m = 2j – 3 = 2 x 6 – 3 = 9  

 

Method of analysis of determinate trusses. 

 

There are two methods of analysis for determining axial forces in members of truss under 

point loads acting at joints. The forces in members are tensile or compressive. The first 

step in each method is to compute reactions. Now we have system of members connected 

at nodes and subjected to external nodal forces. The member forces can be  determined 

by following methods. 

 

(1) Method of joints 

(2) Method of sections 
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The method of joints is used when forces in all the members are required. A particular 

joint is cut out  and its free body diagram is prepared by showing unknown member 

forces. Now by applying equations of equilibrium the forces in the members meeting at 

this joint are computed. Proceeding from this joint to next joint and thus applying 

equations of  equilibrium to all joints the forces in all members are computed. In case of 

space truss the number of unknown member forces at a joint should not  be more than 

three. For plane case number of unknowns should not be more than two. 

 

Equations for space ball and socket joint equilibrium: ∑ Fx = 0, ∑ Fy = 0, ∑ FZ = 0 

 

Equations for xy plane pin joint equilibrium  : ∑ Fx = 0, ∑ Fy = 0 

 

Method of sections 

 

This method is used when internal forces in some members are required. A section is 

passed to cut the truss in two parts exposing unknown forces in required members. The 

unknowns are then determined using equations of equilibrium. In plane truss not more 

than 3 unknowns should be exposed and in case of space truss not more than six 

unknowns should be exposed. 

 

Equations of equilibrium for space truss ∑ Fx = 0, ∑ Fy = 0, ∑ FZ = 0 

using method of sections:   ∑ Mx = 0, ∑ My = 0, ∑ MZ = 0 

 

Equations of equilibrium for xy-plane ∑ Fx = 0, ∑ Fy = 0, ∑ MZ = 0 

truss using method of sections: 

 

Example 9.1 

 

Determine forces in all the members of plane symmetric truss loaded symmetrically as 

shown in figure 9.13 for all members by method of joints and in members 2,4 and 5 by 

method of sections. 

 

∑ Fx = 0 gives, R3 = 0 

 

∑
A

ZM = 0 gives, 30 R2 = 1000 x 10 + 1000 x 20 = 30,000, R2 = 1000 kN 

 

∑ Fy = 0 gives, R2 = 1000 + 1000 – R1 = 2000 – 1000 = 1000 kN 
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Method of joints 

 

Joint A 

 

Free body is shown in figure 9.14. Force in member 1 is assumed tensile and in member 

3 compressive. Actions on pin at A are shown. 

 

∑
A

XF = 0 : F1 – F3 cos 45
0
 = 0, 

 

∑
A

YF = 0 : - F3 sin 45
0
 + 1000 = 0, F3 = 1000 2  = 1414 kN, 

 F1 = 1000 2  x 
2

1
 = 1000 kN 

 

Since positive results are obtained the direction and nature of forces F1 and F3 assumed 

are correct. At joint C there will be three unknowns, hence, we proceed to joint B where 

there are only two unknowns. 

 

Joint B 

 

The free body diagram of joint B is shown in figure 9.15. 

 

∑
B

XF = 0 gives, F3 cos 45
0
 – F4 = 0, F4 = 1000 2  x 

2

1
 = 1000 kN 

∑
B

yF = 0, gives : F6 + F3 cos 45
0
 = 0,  F6 = - 1000 2  x 

2

1
 = - 1000 kN 

 

The negative sign indicates that direction of force assumed is wrong and it would be 

opposite. It is desirable to reverse the direction of  F6 here it self and then proceed to joint 

C, else the value will have to be substituted in subsequent calculation with negative sign 

and there are more chances of making mistakes in calculations. The corrected free body 

diagram of joint B is shown in figure 9.16. 

 

Joint C  

 

The free body diagram for joint C is now prepared and is shown in figure 9.17. 

 

∑
C

YF = 0 gives, F5 cos 45
0
 = 0, F5 = 0 

 

∑
C

XF = 0 gives, F2 = 1000 kN 
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The results are shown in figure 9.18. The arrows shown at the ends of members are forces 

actually acting on pin joints. The reactive forces from joints onto members will decide 

whether it is tension or compression in the members. The sign convention was explained 

in theory. 

 

Method of sections 

 

Now a section is passed cutting through members 2, 4 and 5 and left segment is 

considered as  a free body as shown in Fig.9.19. The unknown member forces are 

assumed tensile. However, if it is possible to predict correct nature, the correct direction 

should be assumed so as to obtain positive result. A critical observation of free body 

indicates that F5 = 0 as its vertical component can not be balanced as remaining resultant 

nodal forces in vertical direction vanish. Now equilibrium in horizontal direction 

indicates that F4 = - F2. The segment  is subjected  to clockwise  moment of  10,000 kNm,  

hence, F2 and F4 should form counter clockwise couple to balance this moment. This also  

indicates force F4 should have opposite direction but same magnitude. Since arm is 10 m, 

F2 x 10 = 10,000, hence, F2 = 1000 kN. and F4 = - 1000 kN. By method of sections we 

proceed as follows: 

 

∑
D

ZM = 0 gives : F2 x 10 + 1000 x 10 – 1000 x 20 = 0, F2 = 1000 kN 

 

∑
C

ZM = 0 gives : - F4 x 10 – 1000 x 10 = 0,  F4 = - 1000 kN 

∑ Fy = 0 gives : - F5 x 
2

1
- 1000 +1000 = 0, F5 = 0 

∑ FX = 0 gives : - F5 x 
2

1
+ F2 + F4 = 0, F5 = 0 

 

Method of tension coefficients for space truss 

 

Consider a member AB of space truss, arbitrarily oriented in space as shown in figure 

9.20. 

 

xA, yA, zA = coordinates of end A  

 

xB, yB, zB = coordinates of end B 

 

LAB = length of member AB 

 

lAB, mAB, nAB = direction cosines of member AB.  

 

θx, θy, θz = angle that axis of member AB makes with x, y and z axis respectively. 
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LAB = ( ) ( ) ( )2AB

2

AB

2

AB zzyyxx −+−+−  

 

lAB = cos θx, mAB = cos θy, nAB = cos θz 

 

AL =  (xB – xA) = lAB LAB 

 

AM = (yB – yA) = mAB LAB 

 

AN = (zB – zA) = nAB LAB 

 

 

Tension coefficient t for a member is defined as tensile force T in the member divided by 

its length L. 

 

 t = 
L

T
, tAB = 

AB

AB

L

T
= tension coefficient for member AB.  

 

Components of force TAB in member AB in x, y and z directions are obtained as follows. 

 

TAB cos θx = TAB 
( )

AB

AB

L

xx −
 = tAB (xB – xA)  

 

TAB con θy = TAB 
( )

AB

AB

L

y−y
 = tAB (yB – yA) 

 

TAB cos θz = TAB 
( )

AB

AB

L

z z−
 = tAB (zB – zA) 

 

PA = External force acting at joint A of space truss shown in Fig.9.21. 

 

QA = Resultant of known member forces at joint A 

 

PAX, PAY, PAZ  = Components of force PA in x,y and z directions 

 

QAX, QAY, QAZ = Components of force QA in x,y and z directions 

 

TAB, TAC, TAD = Unknown tensile forces acting on members AB, AC and AD at joint A. 
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The three equations of equilibrium for joint A are written as follows. 

 

tAB (xB – xA) + tAC (xC – xA) + tAD (xD – xA) + QAX + PAX = 0 

 

tAB (yB – yA) + tAC (yC – yA) + tAD (yD – yA) + QAY + PAY = 0 

 

tAB (zB – zA) + tAC (zC – zA) + tAD (zD – zA) + QAZ + PAZ = 0 

 

These equations can be written in compact form by identifying any member with far and 

near ends. 

 

xF, yF, zF = coordinates of far end of a member 

 

xN, yN, zN = coordinates of near end of a member 

 

∑ t (xF – xN) + QAX + PAX = 0 

 

∑ t (yF – yN) + QAY + PAY = 0 

 

∑ t (zF – zN) + QAZ + PAZ = 0 

 

Method of tension coefficients for plane trusses 

 

Plane truss member AB in tension is shown in Fig.9.22. 

 

Component of pull TAB in x-direction = TAB cos θx = TAB 
( )

AB

AB

L

xx −
 = tAB (xB – xA) 

 

Component of pull TAB in y-direction = TAB cos θy = TAB 
( )

AB

AB

L

yy −
 = tAB (yB – yA) 

 

Positive tension coefficient t will indicate tension 

 

Negative tension coefficient t will indicate compression 

 

LAB = ( ) ( )2

AB

2

AB yyxx −+−  

 

Compact form of equations of equilibrium at joint A is: 

 

∑ t (xF – xN) + QAX + PAY = 0 

∑ t (yF – yN) + QAY + PAZ = 0 
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Example 9.2 

 

For the shear leg system shown in figure 9.23 determine the axial forces in legs and tie 

for vertical load of 100 kN at the apex (head). Length of each leg is 5 m and spread of 

legs is 4 m. The distance from foot of guy rope to center of spread is 7 m. Length of guy 

rope is 10 m. 

 

OC = 7 m, AB = 4 m, AC = BC = 2 m, OH = 10 m, AH = BH = 5 m. 

 

θ = angle guy makes with y axis  

 

CH = 22 25 − = 21  = 4.5826 m 

 

 

From triangle OCH 

 

 

Cos θ = 
( )

( )OH x 2OC

CHOCOH 222 −+
 = 

( )
( )10 x 7  x 2

21710 22 −+
 

 

Cos θ = 0.9143 

 

θ = 23.9
0
, Sin θ = 0.4051 

 

OD = 10 Cos θ = 9.143 m 

 

HD = 10 Sin θ = 4.051 m 

 

CD = 9.143 – 7 = 2.143 m 

 

Coordinates of nodes O, H, A and B are  

 

Node x y z 

 

O 0 0 0 

 

H 0 9.143 4.051 

 

A       -2 7 0 

 

B 2 7 0 
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Equations of equilibrium at H are: 

 

tHA (xA– xH) + tHB (xB – xH) + tHO (xO – xH) = 0  _____ (1) 

 

tHA (yA – yH) + tHB (yB – yH) + tHO (yO – yH) = 0 _____ (2) 

 

tHA (zA – zH) + tHB (zB – zH) + tHO (zO – zH) + PHY = 0 ____ (3) 

- 2 tHA + 2 tHB = 0 ______  (1) 

- 2.143 tHA – 2.143 tHB – 9.143 tHO = 0 ______ (2) 

- 4.051 (tHA + tHB + tHO) – 100 = 0 ______ (3) 

From eqn (1): tHA = tHB 

 

From eqn (2): -2 x 2.143 tHA = 9.143 tHO, ∴ tHA = -2.1332 tHO 

 

From Eqn (3): - 4.051 (-2.1332 – 2.1332 – 1) tHO = 100, tHO = 7.5573 

tHA = tHB = - 2.1332 x 7.5573 = 16.1213 

 

THO = tHO LHO = 7.5573 x 10 = 75.57 kN 

 

CHA, CHB = thrust in shear legs HA and HB 

 

CHA = CHB = 16.1213 x 5 = 80.61 kN 

 

10 CABLES AND ARCHES 

 

10.1 Cables 

 

Cable is a very efficient structural form as it is almost perfectly flexible. Cable has no 

flexural and shear strength. It has also no resistance to thrust, hence, it carries loads by 

simple tension only. Cable adjusts its shape to equilibrium link polygon of loads to which 

it is subjected. A cable has a shape of catenary under its own weight. If  a large point load 

W compared to its own weight is applied to the cable its shape changes to two straight 

segments. If W is small compared to its own weight the change in shape is insignificant 

as shown in figure 10.1. From equilibrium point of view a small segment of horizontal 

length dx shown in Fig.10.2 should satisfy two equations of equilibrium ∑Fx = 0 and ∑Fy 

= 0. The cable maintains its equilibrium by changing its tension and slope that is shape. 

One unknown cable tension T can not satisfy two equilibrium equations, hence, one 

additional unknown of slope θ is required. The cables are used in suspension and cable 

stayed bridges, cable car systems, radio towers and guys in derricks and chimneys. By 

assuming the shape of cable as parabolic, analysis is greatly simplified. 
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10.2 General cable theorem 

 

 

A cable subjected to point loads W1 to Wn is suspended from supports A and B over a 

horizontal span L. Line joining supports makes angle ∝ with horizontal. Therefore 

elevation difference between supports is represented by L tan ∝ as shown in Fig 10.3. 

 

∑W = ∑
=

n

1i

W  = W1 + W2 + ---- + Wi + ----- + Wn 

 

a = 
W

bW
  b,

W

aW iiii

Σ
Σ

=
Σ
Σ

 

 

 

∑
B

M = Counter clockwise moment of vertical downward loads W1 to Wn about support 

B. 

 

 

∑
B

M  = b∑W 

RA = Vertical reaction at A = 
L

M
B

∑
 - H tan ∝ 

 

RB = (∑W + H tan ∝ - 
L

M
B

∑
) 

 

Consider a point X on cable at horizontal coordinate x from A and vertical dip y from 

chord.  

 

X1 X2 = x tan ∝, XX2 = y, XX1 = (x tan ∝ - y) 

 

∑
X

M = Counter clockwise moment of all downward loads left of X,  

 

Since cable is assumed to be perfectly flexible the bending moment at any point of cable 

is zero. Considering moment equilibrium of segment of cable on left of X the relation 

between H, x and y is obtained which defines general cable theorem. 

 

 

 

WWW.ENGGROOM.COM DOWNLOADED FROM WWW.ENGGROOM.COM

FOR MORE STUDY MATERIALS AND PROJECT VISIT WWW.ENGGROOM.COM



-27- 

 

 H (XX1) = ∑
X

M - RA x 

 H (x tan ∝ - y) = ∑
X

M  - (
L

M
B

∑
 - H tan ∝) x 

Hy = ⎥
⎦

⎤
⎢
⎣

⎡ ∑ ∑
B X

M -M
L

x
 

 

Consider a horizontal beam of span L subjected to same vertical loading as cable as 

shown in Fig.10.3. Let VA be reaction at A and MX bending moment at section X at 

coordinate x. 

 

 VA = 
L

M

W
L

b B

∑
∑ =  

 

 MX = VAx - ∑
X

M  = 
L

M
B

∑
x - ∑

X

M  

 

Thus: Hy = MX 

 

The general cable theorem therefore states that at any point on the cable subjected to 

vertical loads, Hy the product of horizontal component of tension in cable and the vertical 

dip of that point from cable chord is equal to the bending moment MX at the same 

horizontal coordinate in a simply supported beam of same span as cable and subjected to 

same vertical loading as the cable.  

 

TA, TB = Tensions in cable at the supports 

 

θA, θB = Slopes of cable at supports 

 

TA = 2

A

2 R  H + , θA = tan
-1

 
H

R A  

 

TB = 2

B

2 R  H + , θB = tan
-1

 
H

R B  

 

If cable is subjected to vertical downward uniformly distributed load of intensityω  as 

shown in Fig.10.4, then: 

 

Hy = MX = 
2

Lω
x - ω

2

x 2
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At mid span x = 
2

L
 and y = h the dip of cable. 

 

Hh = 
8

L

8

L

4

L 222 ωωω
=−  

 

H = 
8h

L2ω
 

 

10.3 Shape of cable 

 

Hy = MX 

 

8h

L2ω
y = 

2

Lω
x - ω

2

x 2

 

 

y = 
2L

4h
x (L – x) 

 

This is the equation of cable curve with respect to cable chord. The cable thus takes the 

shape of parabola under the action of udl. The same equation is valid when chord is 

horizontal as shown in Fig.10.5. 

 

10.4 Length of cable with both ends at same level 

 

S = ∫∫ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+=

L

O

2
L

O dx

dy
  1ds dx 

 

dx

dy
 = 

2L

4h
 (L – 2x)  

 

S = ( )
2

1

L

O

2

2

2

2x - L
L

16h
  1∫ ⎥

⎦

⎤
⎢
⎣

⎡
+ dx 

 

This will give: 

 

S = L ⎥
⎦

⎤
⎢
⎣

⎡
−+−+ ......

L

h

7

256

L

h

5

32

L

h

3

8
  1

6

6

4

4

2

2
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For flat parabolic curves 
L

h

10

1
≤ , only two terms are retained. 

 

S = L ⎥
⎦

⎤
⎢
⎣

⎡
+

2

2

L

h

3

8
  1  

 

10.5 Example  

 

A flexible cable weighing 1 N/m horizontally is suspended over a span of 40 m as shown 

in Fig.10.6. It carries a concentrated load of 300 N at point P at horizontal coordinate 10 

m from left hand support. Find dip at P so that tension in cable does not exceed 1000 N. 

 

RA = 
( )

40

20 x 40 x 1  30 x 300 +
 = 245 N 

 

RB = (300 + 40 x 1) – 245 = 95 N 

 

RA + RB = 340 N = Total vertical load (ok) 

 

Since RB < RA, maximum tension will occur at A. 

 
22 245  H + = 1000 

 

H
2
 = 10

6
 – 245

2
 = 939975, H = 969.523 (Rounded to 970) 

 

H = 970 N 

 

Considering segment left of P, the clockwise moment at P is computed and set to zero 

since cable is flexible. 

 

MP = RA x 10 – Hh – 10 x 5 = 2450 – 970 h – 50 = 2400 – 970 h = 0 

 

h = 
970

2400
 = 2.474 m. 

 

10.6. Arches 

 

An arch is a curved beam circular or parabolic in form supported at its ends and is 

subjected to inplane loading. The internal forces developed in the arch are  axial force, 

shear force and  bending  moment. Depending  upon  number  of   hinges  the  arches  are  
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classified as (1) three hinged arch (2) two hinged arch (3) single hinged arch and (4) fixed 

arch as shown in figures 10.7 to 10.10. A three hinged arch is statically determinate. The 

remaining three are statically indeterminate to first, second and third degree respectively. 

Here only determinate three hinged arch will be considered.  

 

Arch under vertical point loads shown in figure 10.11 is a three hinged arch subjected to 

vertical loads W1 to Wn. The reactions developed at the supports are shown. It may be 

noted that moment at the hinge at C in the arch is zero, hence, horizontal component of 

reaction can be computed from this condition. 

 

RA = 
L

WbΣ
, RB = 

L

WaΣ
, ∑W = W1 + ….. + Wn 

 

∑
C

M = RA 
2

L
 - Hh  

 

H = 
h

M
L

Wb
⎟
⎠

⎞
⎜
⎝

⎛
−

Σ ∑
C

 

 

∑
C

M = Counter clockwise moment about C of all applied vertical loads acting left of C 

 

∑W = Resultant of all applied vertical loads acting downwards 

 

At any point P on the arch as shown in Fig.10.12, the internal forces Fx,Fy and Mz can 

easily be computed as explained previously. From Fx  and Fy shear force and thrust in the 

arch can be computed. 

 

θ = Slope of arch axis at P. 

 

V = Shear at P 

 

C = Thrust at P 

 

M = Bending moment at P 

 

M = Mz 

 

V = Fy cos θ - Fx Sin θ 

 

C = - Fy Sin θ - Fx cos θ 
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10.7. Three hinged parabolic arch under udl 

 

The three hinged arch under udl is shown in Fig.10.13. 

 

The equation of axis of arch is: 

 

y = 
2L

4h
 x (L – x)  

 

RA = RB = 
2

Lω
 

 

By the condition that moment is zero at C: 

 

RA 
2

L
 - Hh - 

2

Lω
 

4

L
 = 0 

 

H = 
h

1
 

8h

L

4

L

8

L
 -

222 ωωω
=⎥

⎦

⎤
⎢
⎣

⎡
+  

 

Consider a section P having coordinates (x,y). 

 

Mx = 
2

Lω
 x - ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
8h

L2ω
 y - 

2

x 2ω
 

 

= 
2

Lω
 x - 

2

x 2ω
- 

8h

L2ω
 ⎥⎦

⎤
⎢⎣
⎡

 x)- (Lx 
L

4h
 

2
 

 

 

= 
2

Lω
 x - 

2

x 2ω
- 

2

Lxω
 + 

2

x 2ω
 = 0 

 

The bending moment in parabolic arch under vertical udl is zero. 

 

10.8. Example  

 

A three hinged parabolic arch of 20 m span and 4 m central rise as shown in Fig.10.14 

carries a point load of 40 kN at 4 m horizontally from left support. Compute BM, SF and 

AF at load point. Also determine maximum positive and negative bending moments in 

the arch and plot the bending moment diagram. 
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y = 
2L

4h
 x (L – x)  = 

400

4 x 4
 x (20 – x) 

 

y = 
25

x
  (20 – x)  

 

RB = 
20

4
 x 40 = 8 kN, RA = 

20

16
 x 40 = 32 kN 

 

MC = 0, 4H = 32 x 10 – 40 x 6 = 80, H = 20 kN 

 

0 ≤≤ x  4 m 

 

Mx = 32 x – 20 
25

x
 (20 – x) = 16 x + 

5

4
 x

2
 

 

x = 4, Mx = 16 x 4 + 
5

16 x 4
 = 76.8 kNm 

 

4 m ≤≤ x  20 m 

 

Mx = 32 x – 20 
25

x
 (20 – x) – 40 (x – 4) = 160 – 24 x + 

5

4
 x

2
 

 

x = 4, Mx = 76.8 kNm (check) 

 

x = 10, Mx = 160 – 240 + 80 = 0 

 

x = 15, Mx = 160 – 24 x 15 + 
5

4
 x 225 = - 20 kNm 

 

x = 20, Mx = 0 (ok) 

 

The bending moment diagram is parabolic as shown in Fig.10.15. 

 

11. INFLUENCE LINES FOR DETERMINATE STRUCTURES 

 

An influence line is a graph or curve showing the variation of any function such as 

reaction, bending moment, shearing farce, axial force, torsion moment, stress or stress 

resultant and displacement at a given section or point of structure, as a unit load acting 

parallel to a given direction crosses the structure. The influence line gives the value of the 

function at only one point or section of the structure and at no other point. A separate 

influence line is to be drawn for the function at any other point.  
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There are two methods of construction of influence lines for determinate and 

indeterminate structures. 

 

1) Direct construction of influence lines by analytical method. 

 

2) Construction of influence lines as deflection curves by Muller-Breslau’s principle. 

 

11.1. Direct analytical method 

 

In the direct method, first response function and its sign convention are identified. 

Conventional free body and equilibrium are used to obtain the value of response function 

for a number of positions of unit load placed along the axis of members of structure. The 

response function values are plotted as influence line curve. The response function can 

also be expressed as function of coordinate x measured from a reference point for various 

segments of structure and then plotted as IL. 

 

11.2. Examples of direct method 

 

Influence lines for simply supported beam 

 

For simply supported beam AB of span L shown in Fig.11.1, the IL diagrams for 

reactions and bending moment and shear force at section X are plotted as the vertical unit 

load rolls from A to B along the axis of beam. 

 

Influence lines for support reactions 

 

A vertical unit load at coordinate x from support a is considered as shown in Fig.11.2. 

 

RB = 
L

x
, RA = 

( )
L

 x- L
 

 

The above equations are for straight line hence, IL will also be a straight line  

 

x = 0, RA = 1, RB = 0 

 

x = L, RA = 0, RB = 1 

 

If a horizontal unit force moves along axis of member, the horizontal reaction H at the 

hinge will be unity. Consequently the IL diagram will be a rectangle with ordinate unity. 

 

x = 0 to L, H = 1  
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The directions identified for RA and RB are vertical upwards and direction identified for 

H is horizontal to left. 

 

Influence lines for BM and SF at a section 

 

The directions of internal forces Vx and Mx at section X are identified as shown in figure 

11.3. Unit load is placed at coordinate x. 

 

0 ≤≤ x  a 

 

RB = 
L

x
, Vx = 

L

x
, Mx = 

L

bx
 

 

a ≤≤ x  L 

 

RA = 
( )

L

 x- L
, Vx = 

( )
L

L -x 
, Mx = 

( )
L

 x- L a
 

 

x = 0,  Vx = 0, Mx = 0 

 

x = a, Vx = 
L

a
, Mx = 

L

ab
 (load just to left of X) 

 

x = a, Vx = 
L

b-
, Mx = 

L

ab
 (load just to right of X) 

 

x = L, Vx = 0, Mx = 0 

 

SF is positive when load is just to leave of section X and it is negative when it is just to 

the right of section. The BM is positive for all positions of load. 

 

 

Influence lines for a determinate truss 

 

 

A four panel truss of span L and height h is shown in figure 11.4. Length of each panel is 

a. It is required to plot influence lines for forces in members 1,2 and 3 as a unit load 

moves along bottom chord from A to B. 
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I L for F1 

 

For any position of load: 

 

F1 = 
h

MD (compressive) 

 

MD = BM at joint D. 

 

Since height of truss is constant the IL for F1 is obtained by drawing the IL for moment at 

D and dividing  its ordinates by h. The  IL  will be triangle with  ordinate  at D equal to 

 

( )( )
h

a

hL

2a2a
= . 

 

IL for F2 

 

Considering equilibrium of left segment about point C: 

 

F2 = 
h

MC (Tensile) 

 

IL for moment at C is a triangle with ordinate 
( )

4h

3a

4ah

3aa
=  

 

IL for F3 

 

The vertical equilibrium of the parts of the truss on either side of the section xx requires 

that the vertical  component of force F3 should balance whatever forces may be imposed 

on these parts that is ∑V=0. 

 

 

Unit load left of joint J 

 

F3 sin θ + RB = 0, sin θ = 
22 ha

h

+
 

 

F3 = - RB cosec θ, cosec θ = 
h

ha 22 +
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The negative sign indicates that the actual force in member 3 in compressive so long as 

load is to the left of joint J. The IL in this region may therefore be drawn by drawing IL 

for RB and multiplying the ordinates by cosec θ. 

 

Unit load to the right of joint D 

 

F3 sin θ - RA = 0, F3 = RA cosec θ 

 

The positive sign indicates that the force in member is tensile so long as the load is right 

of D. The IL in this region is drawn by plotting the IL for RA and then multiplying the 

ordinates by cosec θ. 

 

Unit load between joints J and D 

 

The variation is linear. In fact the IL for diagonal member is proportional to the IL for the 

shear in panel. 

 

Unit load at J 

 

RB = 
4

1
, F3 = - 

4

1
 cosec θ 

 

Unit load at D 

 

RA = 
2

1
, F3 = 

2

1
cosec θ 

 

Influence lines by Muller-Breslau’s principle 

 

According to this principle if a unit distortion (displacement or discontinuity) 

corresponding to the desired function or stress resultant is introduced at the given point or 

section of structure while all other boundary conditions remain unchanged then the 

resulting elastic line or deflection curve of the structure represents the influence line for 

the function corresponding to the imposed displacement. An introduction of unit angular 

change or distortion at a section gives the IL for BM at that section. Similarly, 

introduction of a unit shear distortion produces deflections equal to IL ordinates for SF at 

that section where shear distorsion is introduced.  The IL for reaction at the support is 

obtaining  by introducing  a  unit displacement at this support in the direction of  required  

reaction. The distorsion  to  be  introduced must correspond  to the type of stress resultant 

for which IL is sought and it should not be accompanied by any other type of distorsion 

at the influence section. The influence lines drawn by this method for simply supported 

beams are shown in figures 11.5. 
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12.1. Deformations 

 

When a structure is subjected to the action of applied loads each member undergoes 

deformation due to which the axis of structure is deflected from its original position. The 

deflections also occur due to temperature variations and misfit of members. The 

infinitesimal element of length dx of a straight member (ds of curved member) undergoes 

axial, bending, shearing and torsional deformations as shown in figure 12.1 to 12.7. It is 

assumed that the material of member obeys Hooke’s law. Small displacements are 

considered so that structure maintains geometry. 

 

Axial deformation 

 

∈x dx = 
EA

dxF1x  

 

E = Modulus of elasticity 

 

A = Area of cross-section of member 

 

F1x = Axial force F1 along x-axis at coordinate x. 

 

EA = Axial rigidity 

 

∈x = Strain in x-direction 

 

Axial deformation due to temperature variation ΔT will be 

 

∈x dx =  α ΔT dx  

 

α = Coefficient of thermal expansion 

 

Bending deformations 

 

Bending deformations which occur about y & z axes comprise of relative rotations of the 

sides of the infinitesimal element through an angle dθy and dθz respectively. 

 

Bending about y-axis 

 

dθy  = 
y

5x

EI

dxF
= kydx 
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dθy = Angle change in radians due to bending moment about y-axis 

 

F5x = Bending moment (My) on element about y-axis at coordinate x. 

 

Iy = Moment of inertia of cross section about its principal y-axis 

 

EIy = Flexural rigidity of member with respect to y-axis. 

 

ky = 
y

5x

EI

F
 = Elastic curvature of axis of member in xz-plane. 

 

Bending about z-axis 

 

dθz = 
z

6x

EI

dxF
= kzdx 

 

dθz = Angle change in radians due to bending moment about z-axis 

 

F6x = Bending moment (Mz) on element about z-axis at coordinate x. 

 

Iz = Moment of inertia of cross-section about its principal z-axis. 

 

EIz = Flexural rigidity of member with respect to z-axis. 

 

kz = 
z

6x

EI

F
= Elastic curvature of axis of member in xy-plane. 

 

If the element as shown in Fig.12.4. is subjected to linear temperature change from ΔTt at 

top to ΔTb at bottom, the angle change dθz due to this effect will be  

  

dθz = 
( ) ( )

d

dxTT

d

dxTT btbt −Δ∝
=

Δ−Δ∝
 

 

d = depth of member 

 

Shearing deformations 

 

The deformations dδy and dδz due to shearing forces consist of displacement dδ of one 

side of element with respect to other with respect to y and z directions. 
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dδy = 
GA

dxF2x  μy  

 

dδz = 
GA

dxF3x  μz  

 

F2x = Shear force in y-direction at coordinate x 

 

F3x = Shear force in z-direction at coordinate x 

 

G = Shear modulus 

 

GA = Shear rigidity 

 

μy, μz = nondimensional factors depending solely upon the shape and size of cross-

section which accounts for the nonuniform distribution of shearing stresses. For 

rectangular section μ = 1.2 and for circular section μ = 1.11. For I or H sections 
μ
A

can be 

taken as web area or in other words μ can be taken as ratio of area of cross-section to web 

area ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

wA

A
  μ . 

 

 

Torsional deformation 

 

 

It is given by angle of twist dθx in radians, which represents the difference in the angles 

of rotation of its faces about longitudinal axis of the element. 

 

dθx = 
x

4x

GI

dxF
 

 

Ix = Torsion constant or polar moment of inertia of cross section (Ix = Iy + Iz). 

 

GIx = Torsional rigidity 

 

F4x = Torsion moment (Mx). 
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12.2. Elastic energy of deformation 

 

 

The elastic or potential energy of member of length L is given by following expression: 

 

 

dx
2EI

F

2EI

F

2GI

F

2GA

F

2GA

F

2EA

F
U

L

o
z

2

6x

y

2

5x

x

2

4x

2

3x

2

2xy 
2

1xr ∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++++= zμμ

 

 

Fex (e = 1,…,6) = components of vector of internal stress-resultants {Fx} at an arbitrary 

section of member at a coordinate distance x from reference end. 

 
rU = Elastic strain or potential energy of member number r. 

 

U = ∑
r

rU  = Elastic strain or potential energy of all members of structure. 

 

The energy due to shear is neglected being very small compared to that due to other 

actions. 

 

dx
2EI

F

2EI

F

2GI

F

2EA

F
U

L

o
z

2

6x

y

2

5x

x

2

4x

2

1xr ∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++=  

 

In plane frames subjected to inplane loading primary  action is bending moment only 

hence energy due to axial force is neglected. 

 

Considering only the relevant primary actions the elastic strain energy for various 

structures is given by following expressions. 

 

Axial force structures (plane and space trusses) 

 
 

U = ∑
r

rU = ∑
r

dx
2EA

FL

o

2

1x∫  

 

 

Plane frames in xy-plane subjected to in plane loading 

 

U = ∑
r

rU  = ∑
r
∫

L

o
z

2

6x

2EI

dxF
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Plane grids in xz-plane subjected to normal loading. 

 

U = ∑
r

rU  = ∑
r

dx
2EI

F

2GI

FL

o
z

2

6x

x

2

4x∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+  

 

 

Space frames subjected to general loading 

 

U = ∑
r

rU  =  ∑
r

dx
2EI

F

2EI

F

2GI

F

2EA

FL

o
z

2

6x

y

2

5x

x

2

4x

2

1x∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++  

 

There are various methods developed for computation of displacements depending upon 

structural system and nature of loading but basic methods are based on energy principles 

such as Castigliano’s theorem and virtual work. 

 

12.3 Castigliano’s theorem 

 

The partial derivative of elastic strain energy  U of the structure with respect to any 

external load P is equal to displacement δ in the structure corresponding to that force. The 

terms force and displacement are used in the generalized sense that is word force may 

mean force or moment and word displacement may mean linear or angular displacement. 

Strain energy U is function of P. 

 

P

U
  
∂
∂

=δ  

 

If the deflection is required at a point where there is no load, a load P is placed there and 

in the expression for partial derivative of elastic energy P is set equal to zero. If the 

deflection is required in the direction of a particular defined load the load is replaced with 

P and finally P is set equal to prescribed value. 

 

The deflection calculations are some what simplified if the partial derivatives are worked 

out before integration. 

 

( ) ( ) ( ) ( )
∑

∫∫∫∫

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ ∂∂
+

∂∂
+

∂∂
+

∂∂
=

∂
∂

=
r z

L

6x6x

y

L

5x5x

x

L

4x4x

L

1x1x

dx
EI

P/FF

dx
EI

P/FF

dx
GI

P/FF

EA

dxP/FF

P

U
  δ
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The derivatives  represent the rate of change of forces Fex with respect to P. 

 

P

F
f,

P

F
f,

P

F
f,

P

F
f 6x

6x
5x

5x
4x

x4
1x

1x ∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

=  

 

These derivatives f are equal to values Fex as caused by a unit load (P=1) and are 

represented by fex. 

 

 

∑
∫∫∫∫

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+++=
r z

L

6x6x

y

L

5x5x

x

L

4x4x

L

1x1x

dx
EI

fF

dx
EI

fF

dx
GI

fF

dx
EA

fF

  δ  

 

12.4. Dummy load method 

 

The equations of dummy load method are derived from principle of virtual work, hence, 

it is also called virtual work method. It is also called Maxwell-Mohr method. 

 

In this method two systems of loading of same structure are considered. 

 

System 1: Given structure, loading, temperature variations and misfits of parts 

 

System 2: Same structure subjected to unit action corresponding to desired displacement.  

This  action can  be unit point load  or  unit  moment or  unit  pair of  opposite  

 forces or moments. 

 

The opposing pair of dummy unit loads is deployed to obtain relative displacement or 

rotation of two points on the structure. 

 

According to principle of virtual work if the second system is given a small displacement 

the total work of the forces will be zero. 

 

At a point represented by local coordinate x in a member the internal stress resultants will 

be fex (e = 1,….,6) due to dummy unit action. The virtual displacements of the second 

system are taken as the actual displacements of the first system. Then in accordance with 

the principle of virtual work. 

 

∑ ∫∫∫∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++=

r L z

6x6x

L y

5x5x

L x

4x4x

L

1x1x dx
EI

fF
dx

EI

fF
dx

GI

fF
dx

EA

fF
 x1 δ  

 

WWW.ENGGROOM.COM DOWNLOADED FROM WWW.ENGGROOM.COM

FOR MORE STUDY MATERIALS AND PROJECT VISIT WWW.ENGGROOM.COM



-43- 

It will be observed that the deflection calculations using Castigliano’s theorem are the 

same as in dummy load method. 

 

12.5. Numerical examples 

 

Example 

 

Determine the horizontal and vertical deflections and the angle of rotation at free end A 

of cantilever bracket shown in figure 12.8  neglecting axial and shear deformations. The 

members AB and BC have flexural rigidity EI and axial rigidity EA. Determine 

additional deflection at A if axial deformations are considered.  

 

The structural system comprises of two members. The members are numbered 1 and 2. 

The local axes xyz of members are shown. The common axes system for whole structure 

is XYZ. The bending moment diagrams due to given loading, unit horizontal and vertical 

and unit couple at A are shown in Fig.12.9. The displacements are computed in system 

coordinates XYZ. 

 

Vertical deflection at A 

 

 

dx
EI

fF
- 

r L

6x6x
Y ∑∫=δ  

 

r = 1: 
3EI

Pa
 dx 

EI

Px x 3
a

o
=∫  

 

r = 2: 
EI

hPa
 dx 

EI

a Pa 2
h

o
=∫  

 

 

⎥
⎦

⎤
⎢
⎣

⎡
+=

3EI

Pa

EI

hPa
- 

32

Yδ  

 

 

Horizontal deflection at A 

 

 

dx
EI

fF
 

r

6x6x
X ∑+=δ  
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r = 1: 0 dx 
EI

0Px x a

o
=∫  

 

 

r = 2: 
( )

2EI

Pah

2EI

Pah

EI

h Pa
 dx 

EI

x-hPa 222
h

o
=−=∫  

 

2EI

Pah
 

2

X =δ  

 

 

Rotation at A 

 

 

dx
EI

fF

r

6x6x
Z ∑−=θ  

 

r = 1: 
2EI

Pa
 dx 

EI

1Px x 2
a

o
=∫  

 

 

r = 2: 
EI

Pah
 dx 

EI

1 x Pah

o
=∫  

 

 

⎥
⎦

⎤
⎢
⎣

⎡
+−=

EI

Pah

2EI

Pa
2

Zθ  

 

Effect of axial forces 

 

dx
EA

fF
- 

r

1x1x
Y ∑=δ  

 

r = 2: 
EA

Ph
 dx 

EA

1 x Ph

o
=∫  

 

EA

ph
 - Y =δ  
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Example 

 

Determine horizontal and vertical displacement of point C and horizontal movement of 

roller of plane truss shown in figure 12.10. 

 

A1 = A2 = 150 mm
2
, A3 = 100 mm

2
, E = 200 kN/mm

2
 

 

 

L1 = L2 = 5000 mm, L3 = 8000 mm. 

 

 

Computation for given loading 

 

 

RA = RB = 3 kN 

 

Sin θ 
5

3
 = , cos θ 

5

4
 =  

 

F1 sin θ = 3, F1 
3

5 x 3
 =  = 5 kN (C) 

 

F2 sin θ = 3, F2 
3

5 x 3
 =  = 5 kN (C) 

 

F3 = F2 cos θ = 5 x 
5

4
  = 4 kN (T) 

 

Unit load at C in y-direction 

 

F1 sin θ = 
2

1
 , F1 = 

6

5
  (T) 

 

F2 sin θ = 1, F2 = 
6

5
  (T) 

 

F3 = F1 cos θ  = 
6

5
 x 

5

4
  = 

3

2
  (C) 
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Unit load at C in x-direction 

 

8 RB = 3 x 1, RB = ↑
8

3
  

 

8 RA = 3 x 1, RA = ↓
8

3
  

 

Joint A 

 

F1 sin θ = 
8

3
 , F1 = 

8

5
  (T) 

 

F3 = 1 - 
8

5
  cos θ = 1  -

2

1
  = 

2

1
  (T) 

 

 

Joint B 

 

F2 sin θ = 
8

3
 , F2 = 

8

5
  (C) 

 

Joint C 

 

2 x 
8

5
  cos θ = 1 (check) 

 

Unit load at B in x-direction 

 

 

 RAV = RBV = 0, RAH = 1 kN 

 

F1 = F2 = 0 

 

F3 = 1 (T) 
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                   F1f1  

Member 

L 

(mm) 

A 

(mm2) 

F1 

(kN) 
AE

L
  

f1XC 

(kN) 

f1YC 

(kN) 

f1XB 

(kN) XC YC XB 

3(AB) 

 

 

 

2 (BC) 

 

 

 

1 (CA) 

8000 

 

 

 

5000 

 

 

 

5000 

100 

 

 

 

150 

 

 

 

150 

+ 4 

 

 

 

- 5 

 

 

 

- 5 

5

2
  

 

 
6

1
  

 

6

1
  

+ 
2

1
  

 

- 
8

5
  

 

+ 
8

5
  

 

-
3

2
  

 

+
6

5
  

 

+ 
6

5
  

 

+ 1 

 

 

 

0 

 

 

 

0 

+ 2 

 

 

 

+
8

25
  

 

- 
8

25
  

-
3

8
  

 

-
6

25
  

 

- 
6

25
  

+ 4 

 

 

 

0 

 

 

 

0 

 

 

F1 = Axial force in member due to given loads 

 

f1XC , f1YC, f1XB = Axial force in member due to unit loads in X and Y directions at point 

C and B. 

 

δxc = ∑
=

3

1r

11

AE

LfF
 = 2 x 

5

2
  + 

8

25
  x 

6

1
  - 

8

25
  x 

6

1
  =  

5

4
  = 0.8 mm 

 

δyc = ∑
=

3

1r

11

AE

LfF
 =  -

3

8
  x 

5

2
  -

6

25
  x 

6

1
  - 

6

25
  x  

6

1
  = 2.46 mm 

 

δXB = ∑
=

3

1r

11

AE

LfF
  = 4 x 

5

2
  = o.8 mm 

 

Check 

 

Horizontal movement of roller is equal to extension of bar 3. 

 

(ΔL)3 = 
3AE

FL
⎟
⎠
⎞

⎜
⎝
⎛

=  
200 x 100

8000 x 4
  1.6 mm. 

 

(ΔL)3 = δxc + δXB = 0.8 + 0.8 = 1.6 mm. 

 

 

Example  

 

Determine displacement in the direction of load P acting at A of a cantilever bracket as 

shown in figure 12.11.  
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Following numerical data is given. Bars are circular in section.  

 

a = 100 mm, h = 200 mm, φ = 100 mm, E = 200 kN/mm
2
, G = 70 kN/mm

2
, P = 200 kN 

 

The two members are separated as shown in Fig.12.12. Their local axes x1, y1, z1 and x2, 

y2, z2 are shown. The free bodies of the two members are prepared and BM and TM 

diagrams are shown for P and P = 1. 

 

δ = ∑
∫∫

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
2

1r y

L

5x5x

x

L

4x4x

dx
EI

fF

  dx  
GI

fF

  

 

For circular section 

 

Ix = Iy + Iz 

 

Iy = Iz = 6
44

10 x 909.4
64

100 x  

64
==

ππφ
mm

4
, Ix = 9.818 x 10

6
 mm

4
  

 

Member no I 

 

The member is subjected to primary action of bending moment about y1-axis.  

 

δA1 = Deflection of A due to deformation of member 1 that is deflection of A with respect 

to B if B is clamped. 

 

δA1 = 
6

3

y

3a

o y

2

10 x 4.909 x 200 x 3

100x200

3EI

Pa
 dx 

EI

Px
==∫  = 0.068 mm 

 

 

Member 2 

 

The member no.2 is subjected to primary actions of bending moment about y2-axis and 

torsion moment about x2-axis. 

 

δA2 = Deflection A due to deformation of member 2. 

 

δA2 = 
x

2

y

3h

o

2

x

h

o

2

y GI

hPa

EI3

Ph
dxPa

GI

1
 dx Px  

EI

1
+=+ ∫∫  
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δA2 = 
6

2

6

3

10x 9.818 x 70

200x 100x200

10 x 4.909 x 200 x 3

200 x 200
 + = 0.543 + 0.582 

 

 

Therefore δA = 0.068 + 0.543 + 0.582 = 1.193 mm 

 

Check 

 

θBC = Angle of twist of B with respect C = 
( )( )

  
GI

hPa

x

=
610x 9.818x 70

200 x 100 x 200
 = 5.82 x 10

-3
 

radians 

 

Displacement of A due to twist = 5.82 x 10
-3

 x 100 = 0.582 mm. 

 

 

13  NONPRISMATIC MEMBERS 

 

 

A nonprismatic member has a variable section along its length. For any structural 

member, the stress resultants do not remain constant throughout its length. Where there is 

a significant variation of the stress resultants along the length of member, economy can 

be achieved more efficiently by varying the cross-sectional area of the member, keeping 

in  view the extreme values of  the stress resultants in  the middle and  end sections. Often 

such variation can be adopted to add to the architectural appearance of the structure. 

Generally, two types of members are used: 

 

(1) Members with parabolic haunches or parabolic variation of depth. 

 

(2) Members with straight haunches or with linear variation of depth. 

 

The axis of member with haunches or with variable depth is assumed to be the same as 

for the uniform part usually in the central portion of the member. For a tapered member 

the uniform part will correspond to the minimum section. 

 

Analysis of such members shown in Fig.13.1 to 13.4 involves the determination of fixed 

end reactions due to self weight and loads acting on the members and the flexibility and 

stiffness properties that is force-displacement relationships. For haunched members the 

fixed end moments, stiffness and flexibility properties are expressed in terms of integrals 

or bar constants. The bar constants are available in handbooks. 
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13.1 Fixed end reactions 

 

Fixed end reactions for bending in xy-plane. 

 

Concentrated vertical load F and udl of intensity ω will be considered as shown in Fig. 

13.5.  

 

(1) Concentrated vertical load F acting at a distance a from left end.  
 

 

( )

( ) ( )

∫ ∫ ∫

∫ ∫ ∫ ∫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

L

o

L

o

2
L

o zz

2

z

L

o

L

a

L

o

L

a zz

2

zz

Az

I

xdx

I

dxx

I

dx

I

dxa -x 

I

dxx

I

dxa-xx

I

xdx

 FM  

 

 

(2) Uniformly distributed vertical load of intensity ω acting on whole span. 

 

( )

∫ ∫ ∫

∫ ∫ ∫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
L

o

L

o

2
L

o zz

2

z

L

o

L

o

2
L

o z

2

z

3

z

Az

I

xdx

I

dxx

I

dx

I

dxx

I

dxx

I

xdx

 
2

M
ω

 

 

The fixed end moment at the right end B can be determined by performing the 

integrations in the opposite direction. The vertical reactions at the two ends can be 

determined from the equilibrium of the free body of the member. The case of bending in 

xz-plane is treated similarly. 

 

Fixed end reactions for torsion moment 

 

For concentrated torsion moment T acting at intermediate point of member at distance a 

from left end as shown in Fig.13.6, the fixed end torsional moments are determined from 

the condition of compatibility at the point of application of the external torsional moment. 

The angle of twist θ for the two parts namely the left and right cantilevered segments is 

the same. The left segment is shown in Fig. 13.7 and 13.8. The haunch is shown in 

Fig.13.9. 

 

The angle of twist between any section on the uniform part of the haunched beam and the 

fixed end is given by: 
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θ = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

U

U

H

H

J

L

J

L
 

G

T
 

 

LH = Length of haunched part 

 

LU = Length of uniform part  

 

JH = Torsion constant of haunched part 

 

JU = Torsion constant of uniform part 

 

JH = 
( )

b

d
for  

b63.0d

b63.0d
log 3

ddb

1

2
e

12

3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−
−

 > 1.2 

 

JU = 
b

d
for  

d

b
 0.63 - 1 

 3

db3

⎟
⎠
⎞

⎜
⎝
⎛

 > 1.2 

 

 

The torsional stiffness factor Kt for a member with haunched and uniform parts is given 

by: 

 

Kt = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

H

H

U

U

J

L

J

L

G
 

 

The fixed end torsional moments TA and TB are expressed as: 

 

TA = 
( )

( ) ( )
BtAt

At

K  K

KT

+
 

 

 

TB = 
( )

( ) ( )
BtAt

Bt

K  K

KT

+
 

 

The fixed end reactions for the case of uniformly distributed torque can be worked out in 

similar manner. 
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Fixed end reactions for axial force 

 

The fixed end reactions PA and PB for axial force P acting at any point on uniform part of 

a haunched member as shown in Fig.13.10 are given by: 

 

PA = 
( )

( ) ( )
BFAF

AF

K  K

K P

+
 

 

PA = 
( )

( ) ( )
BFAF

BF

K  K

K P

+
 

 

KF = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

H

H

U

U

A

L

A

L

E
 

 

AH = 
( )

 

d

d
log 

ddb

1

2
e

12 −  

 

The equivalent uniform area Aeq of member of variable section is given in terms of area 

Ax at coordinate x. 

 

L

dx
A

1

  
A 

1

L

o x

eq

∫
=  

 

Axial rigidity =  
L 

EAeq
 

 

The fixed end reactions for the case of uniformly distributed axial force can be worked 

out in a similar manner. 

 

Like fixed end reactions the bar constants are also expressed in terms of integrals. 

Evaluation of integrals from first principles is cumbersome hence, use is made of hand 

books to save this labour. 

 

13.2 Basic concepts and definitions of bar constants of members with variable section 

 

Ends of member of length L are designated by A and B. 
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Rotational stiffness factor 

 

The rotational stiffness factor K at one end of member, which is assumed hinged, is 

defined as the moment required to produce a unit rotation at this end, while the other end 

is assumed to be fixed as shown in Fig.13.11. 

 

In hand books the stiffness factor K at an end of a haunched member is given as: 

 

K =  
L 

kEImin
 

 

k = Stiffness coefficient 

 

E = Modulus of elasticity 

 

Imin = Minimum moment of inertia of member  

 

L = Length of member 

 

Carry over factor 

 

The carry over factor C from the near end to the far end of a bar is defined as the ratio of 

the moment induced at far end, which is assumed fixed, to the applied moment at the near 

end which is assumed hinged. The product of the carry over factor and the rotational 

stiffness factor at one end of member AB is equal to similar product at the other end. 

 

CAB KAB = CBA KBA 

 

Modified rotational stiffness factor 

 

The modified rotational stiffness factor K′ at one end of the member is defined as the 

moment required to produce unit rotation at this end which is assumed hinged when the 

other end is also hinged as shown in Fig.13.12. 

 

ABK′  = KAB (1 – CAB CBA) 

 

BAK′  = KBA (1 – CBA CAB) 
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Lateral stiffness factor 

 

The lateral- stiffness factor K  at one end of the member, which is assumed fixed against 

rotation, is defined as the moment produced at this end when the other end also fixed 

against rotation, is displaced laterally through unit distance with respect to the first end, 

as shown in Fig.13.13. 
 

K AB =  
L 

KAB (1 + CAB) 

 

K BA =  
L 

KBA (1 + CBA) 

 

Modified lateral stiffness factor 

 

The modified lateral stiffness factor 
′

K  at one end of a member, which is assumed fixed 

against rotation is defined as the moment produced at this end when the other end, 

assumed hinged, is displaced laterally through unit distance with respect to first end as 

shown in Fig.13.14. 
 

ABK′  =  
L 

KAB (1 - CAB CBA) 

 

BAK′ =  
L 

KBA (1 - CBA CAB) 

 

14 SLOPE DEFLECTION EQUATIONS 

 

Sign convention 

 

Clockwise moments and rotations at the end of bar are treated positive. The lateral 

displacement between two ends of bar resulting in positive end moments or counter 

clockwise lateral displacement angle ψ is treated as positive. The shear causing clockwise 

moment in the bar is treated as positive. The external loads acting vertically downwards 

are treated positive as shown in Fig.14.1. 

 

The force displacement relationship at the nodes of the elastic bar is defined by following 

slope deflection equations: 

 

MAB = MFAB + KAB θA + CBA KBA θB +  
L 

Δ
KAB (1 + CAB) 
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MBA = MFBA + KBA θB + CAB KAB θA +  
L 

Δ
KBA (1 + CAB) 

 

MFAB, MFBA = Fixed end moments at ends A and B. 

 

Designating A as near end and B as far end of member, the two slope deflection 

equations can be written as: 

 

Mnear = MFnear + Knear θnear + Cfar Kfar θfar +  
L 

Δ
Knear (1 + Cnear) 

 

For a bar of uniform section: 

 

Cnear = Cfar =  
2 

1
 

 

Knear = Kfar =  
L 

EI4
 

 

 

Mnear = MFnear + ⎥⎦
⎤

⎢⎣
⎡ Δ

++
L

3
2 

L 

EI2
farnear θθ  

 

Example 

 

Find the fixed end moments and reactions for the fixed beam AB loaded as shown in 

figure 14.2 and due to downward sinking of support B of 10 mm. E = 15 kN/mm
2
. 

 

From handbook of bar constants the desired coefficients are taken. 

 

aA =  
6 

1.2
= 0.2, rA =  

400

240
= 0.6 

 

aB =  
6 

1.8
= 0.3, rB =  

400

160
= 0.4 

 

For 4 kN load 

 

FEM coeff at A = 0.1371 

 

FEM coeff at B = 0.0327 
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For 3 kN load 

 

FEM coeff at A = 0.0642 

 

FEM coeff at B = 0.1754 

 

MFAB = ∑ (FEM Coeff)A WL 

 

MFAB = 0.137 x 4 x 6 + 0.0642 x 3 x 6 = 4.446 kNm 

 

MFBA = ∑ (FEM Coeff)B WL 

 

          = 0.0327 x 4 x 6 + 0.1754 x 3 x 6 = 3.942 kNm 

 

Fixed end moments due to lateral displacement of B with respect to A. 

 

From handbook of bar constants: 

 

kAB = 6.48, kBA = 6.68, CAB = 0.622, CBA = 0.604 

 

 

Δ = 10 mm, L = 6000 mm, Imin =  
12

400 x 250 3

= 1333.333 x 10
6
 mm

4
 

 

KAB = 
6000

15x 10 x 1333.333 x 6.48
    

L

EIk 6

minAB =  = 216 x 10
5
 kN mm 

 

MFAB =  
L 

Δ
KAB (1 + CAB) =  

6000 

10
x 216 x 10

5
 (1.622) = 58,392 kN mm 

 

 

KBA = 
6000

10 x 1333.333  x 15 x 6.68
    

L

EIk 6

minBA = = 222 x 10
5
 kN mm 

 

MFBA =  
L 

Δ
 KBA (1 + CBA) =  

6000 

10
x 222 x 10

5
 x 1.604 = 59348 kN mm 

 

Total fixed end moments due to loads and relative displacement of supports: 

 

MAB = 4.446 + 58.392 = 62.838 kN m 

 

MBA = 3.942 + 59.348 = 55.406 kN m 
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Reactions are computed from free body shown in Fig.14.3. 

 

6RA = 62.838 – 55.406 + 3 x 1.8 + 4 x 4.8 

 

RA = 5.339 kN 

 

6RB = - 62.838 + 55.403 + 4 x 1.2 + 3 x 4.2 

 

RB = 1.661 kN 

 

RA + RB = 7 kN (check) 

 

Example 

 

A 4 m span fixed tapered beam AB of section 250 x 560 mm at A and 250 x 280 mm at B 

is subjected to udl of intensity 5 kN/m as shown in Fig.14.4. Using hand book of bar 

constants determine fixed end moments and hence reactions. 

 

aA = 1.0, aB = 0, rA =  
560 

280
= 0.5, rB = 0 

 

 

Fixed end moment coeff at A = 0.1216 

 

Fixed end moment coeff at B = 0.0529 

 

FEM = coeff x w x L
2
 

 

MFAB = 0.1216 x 5 x 4 x 4 = 9.728 kN m 

 

MFBA = 0.0529 x 5 x 4 x 4 = 4.232 kN m 

 

The reactions are computed from free body shown in Fig.14.5. 

 

RA =  
4

1
[9.728 + 5 x 4 x 2 – 4.232] = 11.374 kN 

 

RB =  
4

1
[4.232 + 5 x 4 x 2 – 9.728] = 8.626 kN 

 

RA + RB = 11.374 + 8.626 = 20 kN (check) 
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15 MOMENT DISTRIBUTION METHOD 

 

The slope deflection method involves solution of many simultaneous equations. The 

moment distribution method does not involve as many simultaneous equations. The 

number of equations reduces considerately and in case of structures with no lateral 

displacements of nodes of members there are no equations to be solved. Hence, the 

computational work is much less in this method compared to other methods. This method 

has an additional advantage as it is based on iterative technique consisting of series of 

cycles of clamping and unclamping of the joints of structure, each cycle converging on 

the precise final result. Therefore, the series of cycles can be terminated when the desired 

degree of accuracy of results has been achieved.  

 

The moment at each end of a member as can be seen from slope-deflection equations 

comprises of four separate effects. 

 

(1) Fixed end moment (FEM) at the end under consideration due to applied load on the 

member. 

 

(2) Rotation of member at near end. 

 

(3) Rotation of member at far end. 

 

(4) Rotation of axis or chord of member or the lateral displacement of nodes. 

 

In  moment distribution method these effects are considered separately and results are 

superimposed. Consider a joint A where four members meet rigidly as shown in figure 

15.1. The far ends of members are clamped. An artificial clamp is introduced at A. The 

structure is now kinematically determinate comprising of fixed ended members and the 

fixed end moments can be computed for the external loads applied to members. The 

degree of freedom of this structure is one that is rotation at A. Since far ends are clamps 

they neither rotate nor displace laterally. 

 

If the algebraic sum of fixed end moments at A does not vanish, the resultant moment 

acting at the joint is termed unbalanced moment. The artificial clamp holds or balances 

this unbalanced moment.  

 

If now the artificial clamp is removed the joint will rotate under the action of unbalanced 

moment as shown in Fig.15.2 and end moments will develop in all the members as shown 

in Fig.15.3. The moments developed at A due to rotation restore the equilibrium of joint 

and are called distributed moments. The moments developed at far ends are called carry-

over-moments. Same sign convention is followed as in slope deflection method. 

 

M = Unbalanced moment at A = ( )∑
A

FEM   
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When clamp at A is removed or relaxed as it is called the structure deforms further and 

develops distributed member end moments at A and carry over moments at B1 to B4. 

 

For moment joint equilibrium at A:∑
A

M  = 0 

 

M + MAB1 + MAB2 + MAB3 + MAB4 = 0 

 

θB1 = θB2 = θB3 = θB4 = 0 

 

MAB1 = KAB1 θA 

 

MAB2 = KAB2 θA 

 

MAB3 = KAB3 θA 

 

MAB4 = KAB4 θA 

 

θA ⎥
⎦

⎤
⎢
⎣

⎡∑
A

ABK  + M = 0 

 

θA = 
∑

A

ABK

M -
 

 

MAB1 = 
∑

A

AB

AB1

K

K -
M = - (DF)AB1 M 

 

Similarly expression for moments at end A for other members can also be written. 

 

(DF)AB1 = Distribution factor at joint A for member AB1. 

 

(DF)AB1 = 
∑

A

AB

AB1

K

K
 

 

The distributed moment developed at the relaxed end of member under unbalanced 

moment M at corresponding joint is equal to distribution factor (DF) of this member at 

this joint times the unbalanced moment with the sign reversed. 

 

The carry over moment at end B1 will be: MB1A = CAB1 MAB1 
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The carry-over moment to far end is equal to carry over factor times the corresponding 

distributed moment and has the same sign. 

 

If far end of a member is hinged then modified stiffness of the member is to be taken in 

computation of distribution factors as shown in figure 15.4. B1 and B3 are clamps and B2 

and B4 are hinges. 

 

4321

A

AB KKKKK ′++′+=∑  

 

(DF)AB2 = 
∑

′

A

AB

AB2

K

K
 

 

Cantilever portions of structure 

 

The cantilever portions of the structure can be taken care of  in two ways  

 

(1) The effect of loads acting on cantilever can be transferred to nearest joint and 

cantilever part removed as shown in figure 15.5. Nearest joint will be subjected to 

externally applied vertical load and a moment. This moment is to be taken at this joint 

as external moment. For the case under consideration the vertical load will be (P+Q) 

and moment will be   (PL+Qa) as shown in figure 15.5. Now the continuous beam 

ABCD can be analyzed by moment distribution method. D is now a simple support. 

Distribution factor for DC will be 1. There will be no carry over from C to D. For CD 

modified stiffness is used for the moment distribution process. 

 

(2) The continuous beam ABCDE is retained as it is and the cantilever part DE is not 

knocked out. Cantilever moment is entered as FEM for DE. The DF at D will be 1 for 

DC and zero for DE. Since member is now continuous over support D there will be 

carry over of moments from C to D and rotational stiffness of CD will not be 

modified  in  view  of  fact  that  D  is  not  an end  simple support  as  for  case  when 

cantilever is knocked out. The moments DE  and  DC will be of same magnitude and 

equal to cantilever moment but of opposite sign. 

 

It may be noted that cantilever arm has no restraining effect on the rotation of joint to 

which it is rigidly connected or in other words its stiffness is zero. Any unbalanced 

moment is therefore carried or distributed entirely by other members meeting at this joint. 

In the moment distribution process all the hinged joints should be released first for quick 

convergence. As regards other joints one should start with the joint which has largest 

unbalanced moment for rapid convergence. The final results are not affected by the order 

of relaxation of joints. 
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In the structures where only rotation of joints is involved no simultaneous equations are 

required to be solved. Such structures have no side sway. For structures undergoing side 

sway the number of equations to be framed and solved will be equal to number of 

unknown lateral displacements Δ or the side sway angles or chord angles ψ. 

 

For problems involving side sway the solution by moment distribution is carried out in 

two separate parts. 

 

(1) Moment distribution analysis for no sway.  

 

For this artificial constraints are introduced in structure so that there is no sway and 

reactions are determined at these constraints. 

 

(2) Moment distribution analysis for lateral sway.  

 

Now the structure is subjected to lateral displacements  Δ1, Δ2, … , Δn or ψ angles 

ψ1,ψ2, …, ψn corresponding to n constraints introduced and moment distribution 

analysis is carried out and reactions computed at the n constraints in terms of Δ1, Δ2, 

… , Δn. Thus frame is to be analyzed for (n + 1) number of cases. After adding the 

results of sway and non-sway moment distribution cases, the reactions at the 

constraints are set equal to zero as they do not exist. Therefore n is corresponding to 

degree of freedom of structure corresponding to lateral displacements. After lateral 

displacements are computed, the moments and other desired data can be obtained. 

 

Methodology 

 

The methodology is explained on single bay two storey frame as shown in figure 15.6. 

Degree of freedom with respect to side sway = 2.  

 

Δ2 = Side sway at level CF with respect to level at BE. 

 

Δ1 = Side sway at level BE. 

 

There will be two independent ψ-angles ψ1 and ψ2 corresponding to lateral displacements 

Δ1 and Δ2. 

 

This frame will have to be analyzed for (n+1) = (2+1) = 3 cases. The side sway is 

prevented by introducing two constraints as shown in figure 15.7 and the frame is 

analyzed by moment distribution for no sway case and reactions R1 and R2 determined at 

the fictitious constraints. Now constraint at E is given unit displacement to right without 

imparting any rotations to joints B, E, C and F as shown in Fig.15.8. The frame is 

analyzed  and  reactions R1A and  R2A  are determined. Now constraint  at F  is  given unit  
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lateral displacement without rotations at joints B, E, C and F as shown in Fig.15.9. The 

frame is analyzed and reactions R1B and R2B are determined. Since artificial constraints 

are introduced the total reaction at the two constraints for combined three cases should 

vanish. 

 

R1 + R1A Δ1 + R1B Δ2 = 0 

 

R2 + R2A Δ1 + R2B Δ2 = 0 

 

H
,

H
,

H

1

2

2
2

1

1
1

Δ
=Ψ

Δ
=Ψ

Δ
=Ψ    

 

The two equations are solved for Δ1 and Δ2 and moments obtained in the two sway cases 

are modified by substituting the values of Δ1 and Δ2  respectively. Now sway and non 

sway moments are added to get final result. 

 

It may be mentioned here that Kani’s method which is also based on iteration technique 

does not involve solution of any simultaneous equations. Kani’s method will not be 

discussed here. 

 

The method of moment distribution will be demonstrated by solving same problems as in 

case of slope deflection method as shown in figure 15.10. 

 

Example 15.1. 

 

This problem will be solved in two stages. 

 

Stage 1 : For vertical loads 

 

Stage 2 : For concentrated moment at joint B 

 

KBA = 22,200 kNm, KBC = 33,350 kNm 

 

∑
B

K  = KBA + KBC = 55,550 kNm 

 

(DF)BA = 
550,55

200,22
 = 0.4, (DF)BC = 

550,55

350,33
 = 0.6 

 

CBA = 0.604, CBC = 0.294 
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MFAB = - 44.46 kNm, MFBA = + 39.45 kNm 

 

MFBC = - 9.37 kNm, MFCB = + 4.23 kNm 

 

The moment distribution for concentrated moment at joint B is carried out separately. It 

is entered on top of the joint and then distributed. The moments at the ends of members 

for the two cases are now added to obtain final moments.  

 

The reactions can be computed from free body diagrams of supports shown in Fig.15.11. 

 

 

Moment distribution for vertical loads. 

 

 

JOINT A                               B B                             C  

DF & COF                 0.604  ←  0.4 0.6  →  0.294 

 

FEM  

DC 

COC 

 

-44.46             + 39.45 

- 12.03 

-  7.27 

 

-   9.37              + 4.23 

- 18.05 

                          - 5.31 

TOTAL - 51.73            + 27.42     - 27.42               - 1.08 

 

 

Moment distribution for concentrated moment. 

 

                        -5 

JOINT A                               B B                             C  

DF & COF                 0.604  ←  0.4 0.6  →  0.294 

 

DC 

COC 

 

                           - 2.00 

+ 1.21 

 

+ 3.00 

                          + 0.88 

TOTAL + 1.21                + 2.00    + 3.00               + 0.88 
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Final moments 

 

                      -5 

JOINT A                               B B                             C  

DF & COF                 0.604  ←  0.4 0.6  →  0.294 

 

CASE1 

CASE2 

 

- 51.73              + 27.42 

+ 1.21               + 2.00 

 

- 27.42               - 1.08 

+ 3.00               + 0.88 

TOTAL - 50.52              + 29.42   - 24.42               - 0.20 

 

 

Beam AB 

 

RA = 
( )

6

42.2952.50

6

1.8x 30

6

4.8x 40 −
++  = 32 + 9 + 3.52 = 44.52 kN 

 

RBA = 
6

52.5042.29

6

4.2x 30

6

1.2x 40 −
++   = 8 + 21 – 3.52 = 25.48 kN 

 

RA + RBA = 44.52 + 25.48 = 70 kN (ok) 

 

Beam BC 

 

RBC = 
4

0.2 42.24 +
+ 5 x 2 = 6.12 + 10 = 16.12 kN 

 

RC = 5 x 2 - 
4

0.2 42.24 +
= 10 – 6.12 = 3.88 kN 

 

RBC + RC = 16.12 + 3.88 = 20 kN (ok) 

 

Total reaction at support B: 

 

RB = RBA + RBC = 25.48 + 16.12 = 41.6 kN 

 

Example 15.2 

 

The portal frame with unequal legs loaded as shown figure 15.12 is analyzed by moment 

distribution method. 
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Solution for no sway  

 

A roller constraint is introduced at B so that lateral movement is not permitted as shown 

in Figure 15.13. 

 

R1 = Reaction developed at B acting to right.  

 

The dotted line indicates bottom side of members. 

 

MFAB = MFBA = 0 

 

MFBC = - 20 kNm, MFCB = + 20 kNm 

 

MFCD = - 30 kNm, MFDC = + 30 kNm 

 

Distribution factors at A and C 

 

 

KBC = 
( )
4

2I E4
= 2EI, KBA = 

( )
3

I E3
= EI 

 

∑
B

K  = 3 EI 

 

(DF)BA = 
3

1
, (DF)BC = 

3

2
 

 

KCB = 2 EI, KCD = 
3

EI2

6

EI4
=  

 

∑
C

K  = 2 EI + 
3

8

3

EI2
=  EI 

 

(DF)CB = 2 x 
4

3

8

3
= , (DF)CD = 

4

1

8

3
x 

3

2
=  

 

CBA = 0, CBC = CCB = CCD = 0.5 

 

Fixed-end-moments, distribution factors and carry over factors are entered as shown and 

the distribution and carry over cycles of moment distribution method are carried out. The 

final moments for no sway case are obtained. 
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MOMENT DISTRIBUTION FOR NONSWAY CASE 

 

 

JOINT A                         B B                            C C                          D 

DF & COF                   0 ← 3
1  3

2 →0.5      0.5 ← 4
3  

 

4
1 →0.5 

FEM 

DC 

COC 

DC 

COC 

DC 

COC 

DC 

COC 

DC 

COC 

DC 

COC 

DC 

0.00              0.00     

---               +6.67 

0.00               --- 

---                - 1.25 

0.00                --- 

---                +0.83 

0.00                --- 

0.00             - 0.16    

0.00                ---    

---                 +0.11 

0.00                 --- 

---                 - 0.02 

---                    --- 

---                + 0.01   

-20.00           +20.00 

+13.33          +  7.50 

+  3.75          +  6.67 

-   2.50           -  5.00  

-   2.50           -  1.25 

+  1.67           + 0.94 

+  0.47           + 0.84 

-   0.31           -  0.63 

-   0.32           -  0.16 

+  0.21           +  0.12 

+  0.06           +  0.11 

-   0.04           -   0.08 

-   0.04           -   0.02 

+  0.03           +  0.01 

- 30.00        + 30.00 

+  2.50              --- 

    ---             +  1.25 

-  1.67               --- 

     ---             -  0.84

+  0.31              --- 

     ---            +  0.16 

-  0.21               --- 

    ---             -  0.11 

+ 0.04              --- 

   ---              +  0.02 

-  0.03               --- 

   ---              -  0.02 

+ 0.01              --- 

Final 

moments 

 

0.00             + 6.19 

 

-  6.19           + 29.05 

 

- 29.05        + 30.46 

 

 

Horizontal shears are computed from free body diagrams of columns shown in Figure 

15.14. 

 

RAH = 
3

6.19
= 2.063 kN 

 

RCH = 10 x 3 + 
10

29.05  -  30.46
= 30 + 0.23 = 30.23 kN 

 

R1 = 60 – 2.063 – 30.235 = 27.702 kN 
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Solution for sway 

 

 

A unit lateral displacement is imparted at level BC of the kinematically determinate 

system to the left without any rotations as shown in Figure 15.15. 

 

 

MFAB = MFBA = 
3

2

3x 3

6EI
= EI 

 

MFCD = MFDC = 
6

EI

6x 6

6EI
=  

 

 

Multiply these FEMs by 60/EI 

 

 

MFAB = MFBA = 
3

2
 EI x 

EI

60
 = 40 kNm 

 

MFCD = MFDC = 
6

EI
 x 

EI

60
 = 10 kNm 

 

9

6EIΔ
 = 40, Δ = 60/EI 

 

36

6EIΔ
 = 10, Δ = 60/EI 

 

These proportional FEMs are corresponding to Δ = 
EI

06
. 

 

 

These FEMs are entered for process of moment distribution which is carried out and final 

proportional moments obtained as shown in scheme of moment distribution. 
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MOMENT DISTRIBUTION FOR SWAY CASE 

 

 

JOINT A                             B   

 

B                               C C                         D 

DF 
                             

3

1
 

3

2
                        

4

3
 

4

1
 

COF                           0.5←
  

→0.5               0.5← →0.5 

FEM  

Release A 

COC 

+ 40                  + 40 

- 40                       -- 

 ---                     - 20 

---                        --- 

---                        --- 

---                        --- 

+ 10              + 10 

   ---                 --- 

   ---                 --- 

 

FEM 

DC 

COC 

DC 

COC 

DC 

COC 

DC 

COC 

DC 

COC 

DC 

 

0 + 20 

---                      - 6.67

0 --- 

---                      +1.25 

0 --- 

---                      - 0.83

0                           --- 

---                     + 0.16 

0                           --- 

---                     - 0.11 

0                           --- 

0                       +0.02 

 

---                        --- 

- 13.33              - 7.5 

-  3.75               - 6.67 

+ 2.50              + 5.00 

+2.50               + 1.25 

- 1.67               - 0.94 

- 0.47               - 0.84 

+0.31               +0.63 

+0.32               +0.16 

- 0.21                -0.12 

- 0.06                -0.11 

+0.04               +0.08 

 

+ 10              + 10 

- 2.5                 --- 

   ---              - 1.25 

+1.67               --- 

   ---              + 0.84 

- 0.31               --- 

   ---               - 0.16 

+0.21               --- 

   ---               +0.11 

- 0.04               --- 

  ---                 - 0.02

+0.03 

Final 

Moments 

0                     +13.82   - 13.82              - 9.06 + 9.06           + 9.52 

 

 

From the free body diagrams of columns shown in Figure 15.16 the horizontal shears are 

obtained. 

 

3

13.82
R AH = = 4.61 kN, 

( )
6

9.52  9.06
R DH

+
= = 3.10 kN 

WWW.ENGGROOM.COM DOWNLOADED FROM WWW.ENGGROOM.COM

FOR MORE STUDY MATERIALS AND PROJECT VISIT WWW.ENGGROOM.COM



-69- 

 

 

 

R = Reaction at roller constraint for sway case. 

 

R = - (4.61 + 3.10) = - 7.71 kN 

 

MF = Modification factor  

 

R + MF x R = 0 

 

MF = 
71.7

702.27

R

R -

−
−

=  = 3.593 

 

The proportional moments for sway case are corrected by multiplying with modification 

factor and added to moments obtained for nonsway case to obtain final moments for the 

given problem. 

 

MAB = 0 

 

MBA = + 6.19 + 13.82 x 3.593 = 55.85 kNm 

 

MBC = - 6.19 – 13.82 x 3.593 = - 55.85 kNm 

 

MCB = + 29.05 – 9.06 x 3.593 = - 3.50 kNm 

 

MCD = - 29.05 + 9.06 x 3.593 = + 3.50 kNm 

 

MDC = + 30.46 + 9.52 x 3.593 = + 64.67 kNm 

 

The results are same as obtained by slope deflection method. 

 

 

16 ANALYSIS OF CONTINNOUS BEAMS AND PLANE FRAMES CONSISTING   

     OF PRISMATIC AND NON-PRISMATIC MEMBERS. 

 

 

The continuous beams and plane frames are indeterminate structures. The following two 

methods will be discussed here for analysis of such structures. 

 

(1) Slope deflection method 

(2) Moment distribution method 
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In these methods the effect of axial deformations is neglected. These are in fact 

displacement methods. The unknown displacements involved are rotations and lateral 

displacements at the joints. The joints of the structure are assumed to be rigid, hence, the 

member end displacements for all the members meeting at the joint are the same. This is 

known as the condition of compatibility. Besides compatibility, the moment equilibrium 

of the joints and the lateral shear equilibrium of the storeys of frame should be satisfied. 

In slope-deflection equations, the member end moments are expressed in terms of 

member end rotations and relative lateral displacement and loads acting on member. 

Therefore it is possible to express joint and storey equilibrium equations in terms of 

unknown displacements of structure by using slope-deflection equations of all members. 

This gives the system of linear algebraic equations, which is solved by conventional 

methods in case of slope-deflection method and by an iterative physical relaxation 

technique in case of moment distribution method. Final results are obtained in the form of 

member end forces. 

 

Slope-deflection method 

 

The slope-deflection equation for a non-prismatic member AB is as given below. In this 

equation A and B represent near and far ends. 

 

Mnear = MFnear + Knear θnear + Cfar Kfar θfar + ( )nearnear C1K
L

+
Δ

 

 

For prismatic member: 

 

Knear = Kfar = 
L

4EI
 

 

Cnear = Cfar = 
2

1
 

 

The slope deflection equation for uniform member takes the following form. 

 

Mnear = MFnear + ⎥⎦
⎤

⎢⎣
⎡ Δ

++
L

3
2

L

2EI
farnear θθ  

 

Mnear = MFnear + 
L

2EI
[2θnear + θfar + 3ψ] 

 

or Mnear = MFnear + 
L

4EI
θnear + 

L

2EI
θfar + 

2L

6EIΔ
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Mnear = MFnear + 
L

4EI
 θnear + 

L

2EI
θfar + 

L

6EI
ψ 

 

Joint equilibrium equation 

 

The free body diagram of a rigid joint A of a plane structure is shown in figure 16.1. The 

joint exerts positive clockwise moments at the ends of members meeting at this joint and 

is in turn reacted by the same moments in the opposite counter clockwise directions 

together with an external positive moment MextA acting on it.  

 

An external counter  clockwise moment directly acting on the joint is taken positive. The 

joint moment equilibrium equation is written as follows: 

 

∑ Mnear + Mext = 0 

 

∑
A

ABM + MextA = 0 

 

∑
A

ABM = The sum of the moments acting at end A of member AB for all the members 

meeting at this joint. 

 

Shear equilibrium equation 

 

This pertains to the vertical columns of a particular storey in a multistory frame and is 

derived from the shear equilibrium conditions of that storey. The columns are assumed 

free of lateral loads directly acting on them. If there are lateral loads directly acting on the 

columns, the same are replaced by statically equivalent horizontal loads and concentrated 

moments acting on the nodes of frame and columns assumed free of external loads for 

their function in the frame. 

 

Inclined columns and columns of different heights can be handled by writing shear 

equilibrium equation accordingly. 

 

The free body diagram of columns of a particular storey is shown in figure 16.2. The 

equation of equilibrium for a typical column AB shown in figure 16.3 is written as 

follows: 

 

MAB + MBA + HAB hAB = 0 

 

hAB = height of column AB 
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MAB, MBA = moments at top and bottom taken positive clockwise. 

 

HAB = shear in column taken positive acting to left at bottom. 

 

HAB = - 
AB

BAAB

h

MM +
 

 

Let Qr be the external storey shear for the r
th

 storey of frame, which is taken positive 

when acting to right. It is equal to sum of all the external horizontal loads acting on the 

frame above this storey. 

 

∑
r

ABH = Reactive r
th

 storey shear which is sum of base shears of all the columns of this 

storey. 

    

The shear equilibrium equation for the r
th

 storey is: 

 

Qr - ∑
r

ABH = 0 

 

( )∑ +

r AB

BAAB

h

MM
 + Qr = 0 

 

First storey 

 

The columns of first storey are rigidly connected to the nodes of frame at their upper 

ends, their lower ends being either clamped or hinged to the foundation while the 

columns of the other upper storeys are rigidly connected at both the ends. In order that 

the r
th

 storey shear equilibrium equation is also valid for the first storey, the hinged 

column need to be replaced with equivalent column fixed at base. For structural similarity 

of the original hinged column and the substitute fixed column the following conditions 

should be satisfied as shown in figure 16.4. 

 

MABO = MABS 

 

θO = θS 

 

ΔO = ΔS 
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These conditions give: 

 

KABS = 
4

3
 KABO 

 

hABS = 
2

3
hABO 

 

KABO, KABS = Rotational stiffnesses of original hinged and substitute fixed columns. 

 

hABO, hABS = Heights of original hinged and substitute fixed columns. 

 

The method will be demonstrated on numerical examples. 

 

Numerical example on continuous beam 

 

Shown in figure 16.5 is a two span continuous beam of variable section. The continuous 

beam is fixed at A and C and is roller supported at B. The degree of freedom is one that is 

rotation θB at B which is unknown. 

 

θA = θC = 0 

 

The haunched member AB and the tapered member BC were discussed in previous 

sections hence the required properties are reproduced below. 

 

Member AB      Member BC 

 

MFAB = - 44.46 kNm     MFBC = - 9.37 kNm 

MFBA =   39.45 kNm     MFCB =   4.23 kNm 

CAB   =  0.622      CBC    =  0.294 

CBA   =  0.604      CCB    =  0.834 

KAB   = 21,600  kNm     KBC    =  33,350 kNm 

KBA   = 22,200 kNm     KCB    =  11,780 kNm 

Slope-deflection equations: 

 

MAB = MFAB + KAB θA + CBA KBA θB   MBC = MFBC + KBC θB + CCB KCB θC 

MBA = MFBA + KBA θB + CAB KAB θA   MCB = MFCB + KCB θC + CBC KBC θB 

MAB = - 44.46 + 13,408.8 θB    MBC = - 9.37 + 33,350 θB 

MBA = 39.45 + 22,200 θB    MCB = 4.23 + 9804.9 θB 
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Moment equilibrium equation of joint B 

 

MextB + MBA + MBC = 0 

- 5 + 39.45 + 22,200 θB + 33,350 θB – 9.37 = 0 

55,550 θB = - 25.08 

θB = 
550,55

08.25−
= - 4.515 x 10

-4
 radians 

MAB = - 44.46 + 13,408.8 x (- 4.515 x 10
-4

) = - 50.514 kNm 

MBA = 39.45 + 22,200 x (- 4.515 x 10
-4

) = 29.427 kNm 

MBC = - 9.37 + 33,350 x (- 4.515 x 10
-4

) = - 24.427 kNm 

MCB = 4.23 + 9804.9 x (- 4.515 x 10
-4

) = - 0.197 kNm 

 

The reactions are computed as follows using free body diagrams shown in figure 16.6. 

 

Member AB 

 

RA = 
( )

6

427.29514.50

6

1.8 x 30

6

4.8x 40 −
++  = 32 + 9 + 3.15 = 44.51 kN 

 

RB1 = 
( )

6

427.29514.50

6

4.2 x 30

6

1.2x 40 −
−+ = 8 + 21 – 3.51 = 25.49 kN 

 

Member BC 

 

RB2 = 
( )

4

197.0427.24

2

4x 5 +
+  = 10 + 6.16 = 16.16 kN 

RC = 
( )

4

197.0427.24

2

4x 5 +
+  = 10 – 6.16 = 3.84 kN 

 

Roller at B 

 

RB = RB1 + RB2 = 25.49 + 16.16 = 41.65 kN 

 

RA + RB + RC = 44.51 + 41.65 + 3.84 = 90 kN (check) 

 

The final reactions are shown in the figure 16.7. 
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Numerical example on portal frame 

 

A portal frame loaded as shown in figure 16.8 is analyzed for member end forces by 

slope-deflection method. 

 

DOF = 4 (θA, θB, θC, Δ)  

 

Rotations are taken positive clockwise at the joints and lateral displacement Δ at  the 

beam level is taken positive to left. 

 

Since A is a hinge : MAB = 0 

 

Since D is clamp θD = 0 

 

MFBC = - 
4x 4

2 x 2 x 2 x 40
= - 20 kNm 

MFCB = + 
8

4 x 40
 = + 20 kNm 

MFAB = MFBA = 0 

 

MFCD = - 
12

6 x 6 x 10
= - 30 kNm 

 

MFDC = + 
12

6 x 6 x 10
= + 30 kNm  

 

MAB = + ⎟
⎠
⎞

⎜
⎝
⎛ Δ

++
3

3
2

3

EI 2
BA θθ  

 

MBA = + ⎟
⎠
⎞

⎜
⎝
⎛ Δ

++
3

3
2

3

EI 2
BA θθ  

 

MBC = - 20 + ( )CB2
4

EI 4 θθ +  

 

MCB = + 20 + ( )CB 2
4

EI 4 θθ +  

 

MCD = - 30 + ⎟
⎠
⎞

⎜
⎝
⎛ Δ

++
6

3
02

6

EI 2
Cθ  
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MDC = + 30 + ⎟
⎠
⎞

⎜
⎝
⎛ Δ

++
6

3
0

6

EI 2
Cθ  

 

The unknown displacements θA, θB, θC and Δ can be obtained from three moment 

equilibrium equations of joints and one shear equilibrium equation. 

 

MAB = 0 ------------------ (1) 

 

MBA + MBC = 0 --------- (2) 

 

MCB + MCD = 0 --------- (3) 

 

HA + HD – 60 = 0 ------- (4) 

 

HA = 
3

MBA  

 

HD = 
6

3 x 60MM DCCD ++
 

 

2 MBA + MCD + MDC = 180 ---- (4) 

 

⎟
⎠
⎞

⎜
⎝
⎛ Δ

++
3

3
2

3

2EI
BA θθ = 0 

 

 

θA = - 
22

B Δ
−

θ
 ------------------ (1) 

 

( )Δ++ BA 2
3

2EI θθ - 20 + EI (2θB + θC) = 0 

 

2θA + 4θB + 2Δ + 6θB + 3θC = 
EI

60
 

 

3θC + 10θB + 2θA + 2Δ = 
EI

60
--- (2) 

 

20 + EI (θB + 2θC) – 30 + ⎟
⎠
⎞

⎜
⎝
⎛ Δ

+
2

2
3

EI
Cθ  = 0 
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6θB + 12θC + 4θC + Δ = +
EI

60
  

 

6θB + 16θC + Δ = 
EI

60+
--------- (3) 

  

( ) ⎟
⎠
⎞

⎜
⎝
⎛ Δ

+++⎟
⎠
⎞

⎜
⎝
⎛ Δ

++−Δ++
23

EI
30

2
2

3

EI
302

3

4EI
CCBA θθθθ = 180 

 

4θA + 8θB + 3θC + 5Δ = 
EI

540
----- (4) 

 

Substituting value of  θA from equation (1) in equations (2) and (4): 

 

3θC + 9θB + Δ = 
EI

60
--------- (5) 

 

 6θB + 3θC + 3Δ = 
EI

540
----- (6) 

 

or  2θB + θC + Δ = 
EI

180
----- (6) 

 

Eqn (5) – Eqn (6) gives: 

 

 7θB + 2θC  = 
EI

120
----------- (7) 

 

Eqn (3) – Eqn (6) gives: 

 

4θB + 15θC  = - 
EI

120
----------- (8) 

 

Equations (7) & (8) are solved for θB and θC. 

 

(8θC + 105θC) = - 
EI

480
+ 

EI

840
= 

EI

360
 

 

θC  = - 
EI

711.3

97EI

360
−=  
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θB = 
EI

082.16

97EI

360 x 15

EI

120

4

1 −
=⎥⎦

⎤
⎢⎣
⎡ +
−

 

From eqn (6), we get Δ and from eqn (1) θA 

 

Δ = 
EI

180
+ 2 x 

EI

082.16
 + 

EI

711.3
= 

EI

875.215
 

 

θA =  -
2EI

875.215
 + 

2EI

082.16
 =  - 

EI

897.99
 

 

Now member end moments are computed from slope deflection equations. 

 

MAB = 
3

2
EI ⎥⎦

⎤
⎢⎣
⎡ +−

EI

875.215

EI

082.16

EI

99.897 -
x 2 = 0 (check) 

 

MBA = 
3

EI2 ( )
⎥⎦
⎤

⎢⎣
⎡ ++

EI

875.215

EI

16.082 -x 2

EI

99.897 -
 = 55.876 kNm 

 

MBC = - 20 + EI 
( )

⎥⎦
⎤

⎢⎣
⎡ −

EI

711.3

EI

16.082 -x 2
= - 55.875 kNm 

 

MCB = 20 + EI ⎥⎦
⎤

⎢⎣
⎡ −

EI

711.3x 2

EI

16.082 -
= - 3.504 kNm 

 

MCD = - 30 + 
3

EI
⎥⎦
⎤

⎢⎣
⎡ +
−

2EI

875.215

EI

711.3x 2
= + 3.505 kNm 

 

MDC = 30 + 
3

EI
⎥⎦
⎤

⎢⎣
⎡ +
−

2EI

875.215

EI

711.3 
= 64.742 kNm 

 

Shears and axial forces at the ends of members are computed from free body diagrams of 

members shown in Figure 16.9. 

 

Member AB 

 

HA = HB = 
3

876.55
= 18.625 kN 
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Member BC 

 

HC = - HB = - 18.625 kN 

 

VB = 
2

40
+ 
( )

4

504.3875.55 +
= 34.845 kN 

 

VC = 
2

40
- 
( )

4

504.3875.55 +
= 5.155 kN 

 

Member CD 

 

VD = VC = 5.155 kN 

 

HD = 
6

3.505  64.742  3 x 6x 10 ++
= 41.375 kN 

 

Member AB 

 

VA = VB = 34.845 kN 

 

VA + VD = 40 kN, HA + HD = 60 kN (check) 

 

 

17 ANALYSIS OF INDETERMINATE TRUSSES 

 

 

External indeterminacy of a truss is computed as follows. 

 

E∝  = R – r 

 

E∝  = External indeterminacy 

 

R = Total number of reaction components 

 

r = Minimum number of equilibrium equations for truss as a whole for stability. 

 

For plane truss: 

 

∝I = m – (2j – r) 

 

∝I = Internal indeterminacy 
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m = total number of members  

 

j = total number of joints 

 

∝S = Total statical indeterminacy of truss 

 

∝S = E∝  + ∝I = (m + r – 2j) 

 

For space truss: 

 

∝S = (m + R – 3j) 

 

∝I = m – (3j – r) 

 

Internally redundant truss to first degree 

 

Shown in figure 17.1 is internally indeterminate truss to first degree. It is made 

determinate by removing one member as shown in figure 17.2. 

 

Fi = Force in ith member of determinate truss due to given external loads. 

 

m = number of members in determinate truss 

 

Li = Length of ith member 

 

Ai = area of cross section of ith member 

 

X = Force in member which has been removed from redundant truss due to external loads 

acting on indeterminate truss as shown in figure 17.3. 

 

ki = Force in ith member of determinate truss due to unit actions corresponding to 

member removed as shown in figure 17.4. 

 

iF  = Total force in ith member due to external loads and the forces X corresponding to 

removed member. 

 

iF  = Fi + ki X 

 

U = strain energy of determinate truss due to external loads and force X. 

 

( )∑
=

+
=

m

1i i

i

2

ii

E2A

LXkF
  U  
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X

U

∂
∂

= Displacement in the direction of X 

 

ΔLo = Change in length of removed member (assumed extension). 

 

Lo = Length of removed member. 

 

Ao = Area of cross-section of removed member. 

 

E = modulus of elasticity 

 

ΔLo = 
EA

XL

o

o  

 

X

U

∂
∂

= - ΔLo  

 

( )
EA

XL

EA

LkXkF
 

o

o
m

1i i

iiii −
=

+∑
=

 

 

X = - 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∑

∑

=

=
m

1i o

o

i

i

2

i

m

1i

iiii

EA

L

EA

Lk

EA/LkF

 

 

Externally redundant truss to first degree 

 

Externally indeterminate truss to first degree is shown in figure 17.5. It is made 

determinate by providing roller at D instead of hinge. Redundant reaction X is introduced 

at D. Forces in members of determinate truss are computed for external loads and X = 1 

separately as shown in figures 17.6. and 17.7. 

 

 

( )∑
=

+
=

m

1i i

i

2

ii

E2A

LXkF
  U  

 

X

U

∂
∂

= 0  
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( )∑
=

+m

1i i

iiii

EA

LkXkF
 = 0 

 

X = - 

∑

∑

=

=
m

1i i

i

2

i

m

1i i

iii

EA

LK

EA

LkF

 

 

Trusses with n-degrees of redundancy 

 

The truss is made determinate by removing redundant members and reactions. The 

determinate truss is analyzed for forces in members due to given external loads and due 

to unit redundant forces X1, …. Xj, …., Xn. 

 

kij = Force in member I due to Xj = 1 in determinate truss. 

 

iF  = Fi + ∑
=

n

1j

ijk Xj 

 

The strain energy of the truss including strain energy of redundant members is given by: 

 

E2A
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Lj = Length of member corresponding to redundant member.  

 

For strain energy to be minimum. 

 

1X

U

∂
∂

= 
2X

U

∂
∂

= ….. 
jX

U

∂
∂

= ……… = 
nX

U

∂
∂

= 0 

 

For unknown forces corresponding to redundant members: 
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∂
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For unknown forces corresponding to reactions Lj is set equal to zero. The partial 

derivatives with respect to all the n-unknowns give a system of simultaneous equations, 

which is solved for unknowns and the forces in indeterminate truss. 

 

Lack of fit in members of indeterminate trusses 

 

No forces are generated in members of determinate truss due to lack of fit but in case of 

indeterminate truss the forces are generated in members when the members with lack of 

fit are forced into position. Consider an indeterminate truss ABCD in which member BC 

is shorter than its exact length by amount δ as shown in figure 17.8. The member will 

come in tension when fitted. 

 

X = force in member due to lack of fit. 

 

System is made determinate by removing members having lack of fit. Unit forces X = 1 

are applied as shown in figure 17.9. 

 

iF  = kiX 

 

( )∑
=

=
m

1i i

i

2

i

EA

LXk
  U  

 

δ = 
X

U

∂
∂

= movement in the direction of force 

 

 

δ+−
=∑

= EA

XL

EA

XLk
 

o

o
m

1i i

i

2

i  

 

Lo = Length of member having lack of fit 

 

Ao = Area of member having lack of fit 

 

X = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∑

=

m

1i o

o

i

i

2

i

EA

L

EA

Lk

δ
 

 

If  member with lack of fit is longer than Lo, δ will be taken negative. 
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Temperature forces in redundant trusses 

 

The member BC is subjected to rise in temperature of ΔT
o
C. 

 

δLo = ∝Lo ΔT 

 

∝ = Coefficient of thermal expansion 

 

The truss is made determinate by removing the member which is subjected to 

temperature change. Unit loads are applied at the joints of the member as shown in figure 

17.10. and forces in various members are computed. 

 

Force in redundant member BC = kX 

 

( )∑
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=
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= movement in the direction of force X 
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If member BC is subjected to fall in temperature ΔT will be taken negative. 

 

The method discussed above is applicable to plane as well as space trusses and pertains to 

force method. 

 

Numerical examples 

 

Example 17.1. 

 

For the cantilever truss shown in figure 17.11 find the forces in members. The axial 

rigidity AE of all the members is same. 
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There are three members meeting at joint A and two equations of equilibrium, hence, 

static indeterminacy is 1. Let AC be redundant member. It is removed to obtain 

determinate system as shown in figure 17.12. 

 

Joint A 

 

F1 Sin 45
o
 + F3 Sin 30

o
 = 1000 

 

F1 Cos 45
o
 = F1 Cos 30

o
  

 

F1 = 
2

23
  F3 =

2

3
 F3 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

2

1

2

3
 F3 = 1000 

 

F3 = ( )13

2000

+
 = 732.051 (comp) 

 

F1 = 896.576 (Tension) 

 

We apply unit actions corresponding to unknown tensile force in AC as shown in figure 

17.13. 

 

Joint A 

 

k1 Sin 45
o
 = k3 Sin 30

o
 

 

k3 = 2 k1 

 

k1 Cos 45
o
 = k3 Cos 30

o
 = 1 

 

2
2

3

2

k1 +  k1 = 1 

 

k1 ( ) 231 =+  
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k1 = ( ) 7321.2

4142.1

31

2
=

+
 = 0.518 (comp) 

 

 

k3 = ( )31

2

+
 = 0.732 (comp) 

 

X = - 
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1

333111

LLk  Lk

LkFLkF
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X = - 

( ) ( )( )

( ) ( ) L  L
3

2
0.732 -  L20.518 -

L
3

2
732.0732.051 -  L20.518 -x 576.896

22 ++

−+
  

 

 X = - 
( )
( ) 998.1

039.38

1  0.619  0.379

618.759  656.798 -
=

++
+

 = 19.039 kN 

 

1F  = F1 + k1 X = 896.576 – 0.518 x 19.039 = 886.714 kN 

 

2F  = X = 19.039 kN 

 

3F  = F3 + k3 X = - 732.051 – 0.732 x 19.039 = - 745.988 kN 

 

The final forces in members are shown in figure 17.14. 

 

Check  

 

x – direction 

 

- 19.039 + 745.988 x 
2

3
 - 886.714 x 

2

1
 = - 19.039 + 646.045 – 627.001 = 0.004 (ok) 
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y-direction 

 

886.714 x 
2

1
 + 745.988 x 

2

1
- 1000 = 627.001 + 372.994 – 1000 = 0 (ok) 

 

It can be seen that there are small computational errors as the forces are not summing up 

to zero exactly. However, residuals are small and neglected. 

 

Example 17.2.  

 

For internally indeterminate truss shown in figure 17.15 determine forces in all members. 

 

E = 200 kN/mm
2
 

 

Size of vertical members = 30 x 20 mm 

 

Size of horizontal members = 30 x 30 mm 

 

Size of diagonal members = 20 x 20 mm 

 

Member BC is removed to make the truss determinate as shown in figure 17.16.  Forces 

in members F are now determined. 

 

RAV = RD = 7.5 kN 

 

RAH = 10 kN 

 

Joint C 

 

F4 Cos θ = 10 

 

F4 = 10 x 
4

50

4

5
=  = 12.5 kN (Tension) 

 

F2 = F4 Sin θ = 
2

15

5

3
x

4

50
= = 7.5 kN (comp) 

 

Joint B 

 

F1 = F5 = 0 
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Joint A 

 

F3 = 10 – F4 Cos θ = 10 - 
5

4
x

4

50
= 0 

 

Now unit actions are applied at B and C as shown in figure 17.17 and forces are 

determined in members. 

 

Joint B 

 

k5 Cos θ = 1, k5 = 
4

5
= 1.25 kN (comp) 

 

k1 = k5 Sin θ = 
4

3

 5

3
x 

4

5
= = 0.75 kN (Tension) 

 

Joint A 

 

k4  Sin  θ = k1 = 
4

3
 

 

k4 = 
4

5

 4

3
x 

3

5
= kN (comp) 

 

k3 = k4 Cos θ = 
 5

4
x 

4

5
= 1 kN (Tension) 

 

Joint C  

 

K2 = k4 Sin θ = 
4

3

 5

3
x 

4

5
= = 0.75 kN (Tension) 
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Computations are carried out in tabular form 

 

 

Member Force F 

(kN) 

Force k 

(kN) 

Length 

(mm) 

Area 

(mm
2
) A

FkL
 

A

Lk 2

 
Final Force F 

(F + k X) 

 

1 

2 

3 

4 

5 

 

  0 

-7.5 

  0 

12.5 

  0 

 

 0.75 

 0.75 

 1.00 

-1.25 

-1.25 

 

3000 

3000 

4000 

5000 

5000 

 

600 

600 

900 

400 

400 

 

  0 

- 28.125 

  0 

-195.312 

  0 

 

2.8125 

2.8125 

4.4444 

19.5312 

19.5312 

 

  3.128 

- 4.373 

  4.170 

  7.288 

- 5.213 

 ∑ -223.437 49.1318  

 

900

4000

A

L

o

o =  = 4.44444 

 

X = - ( )4444.41318.49

437.223

+
−

 = + 4.17 kN 

 

18  APPROXIMATE  METHODS  OF  ANALYSIS OF  

      STATICALLY INDETERMINATE STRUCTURES 

 

Even the so called exact analysis of structures is approximate in the broad sense because 

every analysis is based on assumptions with respect to geometry and material behavior of 

structure. However, the approximate analysis for statically indeterminate structures is 

based on assumptions, which render the indeterminate system to a determinate system, 

which can be analyzed exactly by use of equations of equilibrium. The advantage is that 

analysis of determinate systems does not depend on elastic properties of members where 

as analysis of statically indeterminate systems depends on elastic properties of members. 

Approximate analysis is also required for assumption of initial elastic properties of 

members in order to carry out design of indeterminate structure. Approximate methods 

are also adopted under situation of configuration complexity of structure for which exact 

method of analysis is not available. Where exact analysis requires prohibitive time and 

cost it should be abandoned and approximate method adopted which generally gives 

conservative design. The first step in approximate analysis of statically indeterminate 

structure is to determine its statical indeterminacy and then introduce equal number of 

releases to make it determinate. 
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The following types of statically indeterminate structures are generally analyzed by 

approximate methods. 

 

1. Parallel chord trusses with two diagonals in each panel. 

2. Portals, trussed portals and mill bents. 

3. Towers with straight legs. 

4. Building frames. 

 

The approximate analysis will be explained on following examples. 

 

1. Parallel chord indeterminate truss shown in figure 18.1. 

 

The degree of static indeterminacy is 4 as four additional diagonal members have 

been introduced in just rigid or determinate simple truss. The assumption that will be 

made here is that in each panel the shear is equally divided between the two diagonals 

or in other words the numerical values of force in diagonal members of same panel 

are equal. This amounts to four independent assumptions or reduction of static 

indeterminacy by 4, hence, truss can be analyzed as determinate truss.  

 

2. Fixed portal under horizontal load.  

 

For the portal shown in figure 18.2 the degree of static indeterminacy is 3. Hence, 

three assumptions are required. The points of contra flexure occur at mid height of 

columns. Hence, two hinges will be introduced at mid height as shown in Figure 18.3. 

The third assumption will be made as equal resistance to shear by the columns. Now 

analysis is possible by equations of equilibrium and is self explanatory from figure 

18.4. 

 

3. Trussed portal and mill bents.  

 

Here also, the hinges are introduced at mid height of columns and it is assumed that 

columns carry same horizontal shear as shown in figures 18.5 and 18.6. 

 

Vertical reaction at hinges = 
L

h
2

H
 P ⎟

⎠
⎞

⎜
⎝
⎛ +

 

 

Other results are self explanatory. 
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4. Tower with straight legs shown in figure 18.7. 

 

Tower is a space truss. For approximate analysis it is necessary that each face of 

tower should be a plane. Each face is separated out as a plane truss as shown in figure 

18.8 and equivalent inplane loads are shown. The indeterminate plane truss is 

replaced by two determinate plane trusses as shown figures 18.9 and 18.10 and the 

loads are apportioned on these trusses. Final result of forces in the members is 

obtained by superposing the results of individual trusses. 

 

5. Plane multistory indeterminate frames as shown in figure 18.11. 

 

The analysis is carried out separately for vertical and lateral loads. For lateral loads 

following methods are used.  

 

(1) Portal method 

(2) Cantilever method 

(3) Factor method 

 

Analysis for vertical loads 

 

The analysis for vertical loads is carried out on following assumptions  

 

(a) The axial force in the girder is zero 

 

(b) A point of inflection occurs in the girder at one-tenth point measured along span from 

each end. The hinges are introduced at these points as shown in figure 18.12. 

 

(c) The girder is analyzed for positive BM as a simply supported beam of span 0.8L and 

the vertical reactions are transferred to cantilever parts of span 0.1L as shown in 

Figure 18.13. The negative moments at the ends of beam are computed as the 

negative moments at the cantilever clamps as shown in figure 18.14. The vertical 

reactions of clamps are transferred to the columns as axial loads. 

 

(d) At the beam column junction the clamp bending moment is distributed between the 

columns above and below in proportion to their stiffness. A typical girder AB is 

considered as shown in figure 18.15. 

 

Maximum positive BM at centre = 
( )

8

L8.0 
2ω

= 0.08 ωL
2
. 

Maximum reaction at hinge = 0.4ωL. 
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Maximum negative bending moment is computed as cantilever clamp moment. 

 

Maximum negative BM at end MA = ω(0.1L) 
( )

2

L1.0 
+ 0.4ωL (0.1L) = 0.045 ωL

2
 

 

Reaction at end A RA = ω(0.1L) + 0. 4ωL = 0.5 ωL 

 

At A axial load transmitted to column is RA = 0.5 ωL. 

 

The moment MA is distributed to upper and lower columns proportional to their 

stiffnesses. 

 

MAU = MA ( )21

2

KK

K 

+
 

 

MAL = MA ( )21

1

KK

K 

+
 

 

If at the joint their is beam on the other side also, its analysis can also be carried out 

similarly and forces in column superposed.  

 

Analysis for horizontal loads 

 

Portal Method 

 

In portal method following assumptions are made. 

 

(a) The point of contra flexure in each girder is located at its mid span point. 

 

(b) The point of contra flexure in a column is located at mid height of each column. 

 

(c) The total horizontal external shear on each storey is distributed between the column 

of that storey so that each interior column carries twice as much shear as the exterior 

column. 

 

Shown in  figure 18.16 is a plane frame with columns C1 to C6 and girders g1 to g4. It is 

subjected to lateral loads P and Q. The hinges are assumed at mid points of all the 

members and the horizontal shears are distributed in columns in accordance with the 

rules as shown in figure 18.17. 
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BM in column 

 

BM in a column is equal to shear in column multiplied by half its height. 

 

BM in C1 = 
( )

4

HQ  P

2

H

2

Q  P 11 +
=⎟

⎠
⎞

⎜
⎝
⎛ +

 

 

BM in C2 = 
( )

4

PH2  

 

BM in girder  

 

The girder and column moments act in apposite directions at their junction in accordance 

with their elastic line or deflection curve as shown in figure 18.18. 

 

At joint E: 

 

MC1 + MC2 = Mg1 + Mg2 

 

Since column end moments are now known the beam end moments can be computed. At 

end F of g2: 

 

MFE = MC5 + MC6 

 

Since moment at centre of girder is zero, Mg2 = MFE.  

 

Hence, Mg1 = MC1 + MC2 – Mg2.  

 

Thus proceeding across the girder of first level the girder moments are determined. The 

girder moments at other level can also be determined in the same manner. 

 

SF in girder 

 

Considering free body of g2, as shown in figure 18.19 the shear at ends is obtained 

 

 Vg2 = 
2

g2

L

M2
 

 

Likewise shear is determined in all girders. 
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AF in columns 

 

Axial forces in columns can be obtained by summing up from the top of the column, the 

shears transferred to the column by the girders connected to this column. 

 

AF in girder  

 

Axial forces in girders are obtained by summing up the horizontal forces from one end of 

the girder to the other end. 

 

Cantilever method 

 

The following assumptions are made. 

 

1) As in portal method the points of contra flexure are assumed at mid points of all 

beams and columns as shown in figure 18.20. 

 

2) The intensity of axial stress in each column of a storey is proportional to the 

horizontal distance of that column from the centre of gravity of all columns of that 

storey. The steps of this method are demonstrated on a three by two plane frame as 

shown in figure 18.20. It is assumed that all columns have same area of cross-section 

A. The distance of CG of columns x in horizontal direction from A is computed as 

follows as shown in figure 18.21. 

 

x (4A) = AL1 + A(L1 + L2) + A(L1 + L2 + L3)  

 

x = 
( )

4

LL23L 321 ++
 

 

FAE = axial force in AE (T) 

 

FBF = Axial force in BF = 
( )

x

L -x 1  FAE (T) 

 

FCG = Axial force in CG = 
( )

x

xLL 21 −+
 FAE (C) 

 

FDH = Axial force in DH = 
( )

x

xLLL 321 −++
FAE (C) 

 

Taking a free body above the horizontal section through mid points of columns of first 

storey the expression for moment about mid point of column DH is set equal to zero. 
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P ⎟
⎠
⎞

⎜
⎝
⎛ +

2

H
H 1

2 + Q ⎟
⎠
⎞

⎜
⎝
⎛

2

H1 - FAE (L1 + L2 + L3) - 
x

FAE (x – L1) (L2 + L3)  

 

+ 
x

FAE (L1 + L2 - x) L3 = 0 

 

This gives the value of FAE, hence, forces in columns of first storey are computed. The 

forces in columns of second storey are computed in the same manner by taking moment 

about mid point of column HL of the free body above the horizontal section through mid 

points of columns of second storey. 

 

Girder shears 

 

The girder shears can be obtained from the column axial forces at the various joints as 

shown in figure 18.22. 

 

Joint I 

 

VIJ = FIE 

 

Joint E 

 

VEF = FEA – VIJ = FEA – FIE  

 

Girder moments 

 

The moment at each end of girder equals the shear in that girder multiplied by half the 

length of that girder as shown in figure 18.23. For example: 

 

MEF = VEF 
2

L1  

 

Column moments 

 

Column moments are determined by beginning at the top of each column stack and 

working progressively down to base as shown in figure 18.24. 

 

Joint J 

 

MJF = VIJ 
2

L1  + VJK 
2

L2  
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Since there is a point of contra flexure at the center of FJ, MFJ will be equal to MJF. 

 

MFJ = MJF 

 

MFB + MFJ = MFG + MFE 

 

MFB = MFG + MFE - MFJ 

 

Because of hinge in middle of column: 

 

MBF = MFB 

 

Proceeding in this manner moments, shears and axial forces in all members are 

determined. 

 

The factor method 

 

This method is more accurate compared to portal and cantilever methods. The 

assumptions in factor method are based on elastic action of structure hence results of this 

method correspond to approximate slope-deflection analysis. The method is not discussed 

here. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

*** CONCLUDING REMARKS *** 

 

 

Readers are welcome to point out any errors noticed in the lecture course material 

so that corrections can be incorporated. Any suggestions are welcome by the author. 
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