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Abstract

Intrusion is broadly defined as a successful attack on a network. The definition of

attack itself is quite ambiguous and there exists various definitions of it. With the

advent of Internet age and the tremendous increase in the computational resources

available to an average user, the security risk of each and every computer has grown

exponentially. Intrusion Detection System (IDS) is a software tool used to detect

unauthorized access to a computer system or network. It is a dynamic monitoring

entity that complements the static monitoring abilities of a firewall.

Data Mining techniques provide efficient methods for the development of IDS. The

idea behind using data mining techniques is that they can automate the process of

creating traffic models from some reference data and thereby eliminate the need of

laborious manual intervention. Such systems are capable of detecting not only known

attacks but also their variations.

Existing IDS technologies, on the basis of detection methodology are broadly clas-

sified as Misuse or Signature Based Detection and Anomaly Detection Based System.

The idea behind misuse detection consists of comparing network traffic against a

Model describing known intrusion. The anomaly detection method is based on the

analysis of the profiles that represent normal traffic behavior.

Semi-Supervised systems for anomaly detection would reduce the demands of the

training process by reducing the requirement of training labeled data. A Self Training

Support Vector Machine based detection algorithm is presented in this thesis. In the

past, Self-Training of SVM has been successfully used for reducing the size of labeled

training set in other domains. A similar method was implemented and results of

the simulation performed on the KDD Cup 99 dataset for intrusion detection show a

reduction of upto 90% in the size of labeled training set required as compared to the

supervised learning techniques.
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Chapter 1

Introduction

1.1 Intrusion

Intrusion is generally defined as a successful attack on a network or system. In a

technical report on the practice of Intrusion Detection[1], Julia et. al. have defined

attack as “An action conducted by one adversary, the intruder, against another ad-

versary, the victim. The intruder carries out an attack with a specific objective in

mind. From the perspective of an administrator responsible for maintaining a system,

an attack is a set of one or more events that may have one or more security conse-

quences. From the perspective of an intruder, an attack is a mechanism to fulfill an

objective.”

By its very definition, an intrusion is a subjective phenomenon and its presence or

absence can be perceived differently by different observers. An attacker would deem

an attack to be successful if he is able to achieve the objectives with which the attack

was initiated. From the viewpoint of the victim, an attack is considered successful if

it has consequences for him. It is important to note that an attack, though successful

from the victim’s perspective may still be unsuccessful from the intruder’s perspective.

For the purpose of detection, usually the victim’s perspective is considered.

Some common examples of intrusions at the network level would include Denial of

Service (DoS) Attack, Packet Sniffing and Remote Login etc. Trojans and spywares

are some of the mechanisms by which system level intrusions are achieved.

1



1.2 Intrusion Detection System Introduction

1.2 Intrusion Detection System

An intrusion detection system (IDS) is a software tool used to detect unauthorized

access to a computer system or network. Ideally an intrusion detection system should

be capable of detecting all types of malicious network traffic and computer usage. It

is a dynamic entity that complements the static firewall. IDSs have been given the

distinction of being dynamic entities by virtue of the fact that they take into account

the present state of the system or network and can take actions accordingly. Consider

the scenario of a guessing attack on login system. An IDS would be able to recognize

the multiple failed attempts in a short span of time and would flag the activity as

suspicious. However, the firewall would fail to do so as they are designed to work with

a set of pre-configured rules.

Originally intrusion detection systems were tasked with the job of analyzing the

network traffic or system activities and raise a flag in case of suspicious events. These

systems were not capable of preventing the intrusion. Nowadays efforts are on to

develop Intrusion Detection and Prevention Systems (IDPS). Apart from the

detection module, these systems have a prevention system as well. The intrusion pre-

vention system is supposed to take necessary actions required to prevent an intrusion

detected by the detection system.

The advances in the field of social media have significantly contributed to lowering

of the skills required for launching a successful attack. In addition to that, the variety

and complexity of the systems used today also lead to enhanced and more sophisti-

cated exploits. With our increased dependence on computers and more specifically on

the Internet, intrusions present a very serious threat to the three goals of security i.e.

confidentiality, integrity and availability. Hence more efficient and accurate intrusion

detection systems have become the need of the hour.

1.3 Architecture of an IDS

An Intrusion detection system is considered to have the following components:

Data Acquisition Module This module is used in the data collection phase. In the

2



1.3 Architecture of an IDS Introduction

Figure 1.1: Architecture of a Network Intrusion Detection System

case of a Network Intrusion Detection System (NIDS), the source of the data

can be the raw frames from the network or information from upper protocol

layers such as the IP or UDP. In the case of host based detection system, source

of data are the audit logs maintained by the operating system.

Feature Generator This module is responsible for extracting a set of selected fea-

tures from the data acquired by the acquisition module. Features can be clas-

sified as low-level and high-level features. A low-level feature can be directly

extracted from captured data whereas some deductions are required to be per-

formed to extract the high-level features. Considering the example of a network

based IDS, the source IP and destination IP of network packets would be the

low level features whereas information such as number of failed login attempts

would be classified as high level features. Sometimes features are categorized

based on the source of data as well.

Incident Detector This is the core of an IDS. This is the module that processes

the data generated by the Feature Generator and identifies intrusions. Intrusion

detection methodologies are generally classified as misuse detection and anomaly

detection. Misuse detection sytems have definitions of attacks and they match

the input data against those definitions. Upon a successful match, the activity

3



1.4 Classification of IDS Introduction

is classified as intrusion. Anomaly detection systems are based on a definition

of normal behaviour of a system. Any deviations from this normal profile lead

to the classification of the corresponding activity as suspicious. Irrespective of

the detection methodology, upon detection of an intrusion, an alert is generated

and sent to the Response Management module.

Traffic Model Generator This module contains the reference data with which the

Incident Detector compares the data acquired by the acquisition modules and

processed by the feature generator. The source of data of the Traffic Model Gen-

erator could be non-automated(coming from human knowledge) or automated

(coming from automated knowledge gathering process).

Response Management Upon receiving an alert from the incident detector, this

module initiates actions in response to a possible intrusion.

A block diagram of the architecture of a Network Intrusion Detection is presented

in fig 1.1. The architecture for a Host Based Intrusion Detection System would be

similar.

1.4 Classification of IDS

Intrusion Detection systems are generally classified on the basis of detection method-

ology and source of data.

1.4.1 Detection Methodology based classification

Misuse or Signature Based Detection System Misuse detection based detection

consists of comparing the traffic against a Model describing known intrusion

events. This approach is quite effective at detecting known threats but its per-

formance while detecting unknown threats is very poor. Pattern recognition,

Implication rules and Data mining techniques are some of the most commonly

used techniques for misuse detection.

Anomaly Detection Based System The anomaly detection method is based on

the comparison of current traffic profiles against the profiles representing normal

4



1.4 Classification of IDS Introduction

traffic behavior. Initially an anomaly detector creates a baseline profile of the

normal legitimate traffic activity. Thereafter, any new activity deviating from

the normal profile is considered an anomaly. This detection methodology has

the potential of detecting previously unknown attacks. However, currently the

major problem with this system is the high false alarm rate. Statistical methods,

machine learning and data mining techniques are among the most commonly

used techniques for anomaly detection.

Stateful Protocol Analysis Based System This methodology is based on the as-

sumption that IDS could know and trace the protocol states. Though SPA

process seems similar to the Anomaly Detection methodology, they are basi-

cally different. SPA depends on vendor-developed generic profiles to specific

protocols whereas, Anomaly Detection uses preloaded network or host specific

profiles. Generally, the network protocol models in SPA are based on protocol

standards from international standard organizations, e.g., IETF. SPA is also

known as Specification- based Detection.

Hybrid Most existing IDSs use multiple methodologies to improve the accuracy of

detection. For example, Signature Detection and Anomaly Detection are used

as complementary methods as they provide a mixture of improved accuracy and

ability to detect unknown attacks.

1.4.2 Data Source based classification

Network Based Intrusion Detection This class of IDS acquires its data from the

raw frames from the network or information from upper protocol layers such as

the IP or UDP. Analysis is then performed on the network logs and consequently

the detection occurs at the network level.

Host Based Intrusion Detection In the case of host based detection system, source

of data are the audit logs maintained by the operating system. System call logs

and file system logs are the commonly used sources of data. This class of IDS

detects intrusions occuring on a particular host device.

5



1.4 Classification of IDS Introduction

Methodology Pros Cons

Signature-
Based

Simplest and an effective
method to detect known at-
tacks.

Ineffective to detect unknown
attacks, evasion attacks, and
variants of known attacks.

Detailed contextual analysis. Little understanding of states
and protocols.
Hard to keep signa-
tures/patterns up to date.

Anomaly-
Based

Effective to detect new and
unforeseen vulnerabilities.

Weak profile accuracy due to
observed events being con-
stantly changed.

Less dependent on OS. Unavailable during rebuilding
of behavior profiles.

Facilitate detections of privi-
lege abuse.

Difficult to trigger alerts in
right time.

Stateful Pro-
tocol Analysis

Know and trace the protocol
states.

Protocol state tracing and ex-
amination is resource consum-
ing.

Distinguish unexpected se-
quences of commands.

Distinguish unexpected se-
quences of commands.
Might be incompatible to ded-
icated OSs or APs.

Table 1.1: Comparison of Intrusion Detection Methodologies

6



1.5 Literature Review Introduction

1.5 Literature Review

Automatic Network Intrusion Detection has been an area of active research for more

than the last 20 years. In a survey paper by Catania et. al. [2], the evolution of this

field of research and the issues with the existing systems have been discussed. The

first Network Intrusion Detection Systems (NIDS) were misuse detection based system

like P-BEST and SNORT. However since these systems rely deeply on human activ-

ity for traffic model acquistion process, they could not scale with the ever increasing

variations of attacks. Data Mining was applied to some misuse based systems to re-

duce the demand of human intervention. Various anomaly detection techniques have

been applied to this problem domain. Porras and Valdes presented a fairly successful

Statistical-Based approach and various Machine Learning techniques have also been

applied to this problem. Application of SVM and ANN for intrusion detection was

propsed by Chen et. al [3] and Eskin et. al [4] presented an unsupervised technique

based on hierarchical clustering. A detailed taxonomy and extensive comparison of

various existing methods have been presented in a comprehensive review of Intrusion

Detection Systems, Liao et. al. [5].

Apart from the issues related to the requirement of high level of human interaction,

other problems with Intrusion Detection Systems have been discussed by Catania et.

al. [2]. Lack of model adjustment information, proper traffic feature identification,

lack of resource consumption information and lack of public network traffic data-sets

have been mentioned as some of the important issues. Patcha et. al [6] have given

a review of open problems in anomaly detection based IDS. High computation com-

plexity, noise in audit data, high false positive rate, lack of recent standard data-set,

inability of IDS to defend itself from attacks, precise definition of normal behaviour

and inability of IDS to analyze encrypted packets have been cited as the prominent

problems with these systems..
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1.6 Motivation Introduction

1.6 Motivation

As discussed earlier, with the recent advances in the field of software exploits and the

lowering of skills required for launching a successful attack, the problem of detecting

intrusions, effectively and accurately, is becoming more and more challenging. This

is severely compounded by the fact that misuse detection based system cannot suffice

to meet the present needs because the number of zero-day exploits is on the rise and

the problem with most anomaly detection systems is that of high false alarm rate.

Further to this, both misuse and anomaly based systems require a significant amount

of labeled data for the development of the traffic models used by the incident detector.

Labeling of data is extremely difficult, time consuming and costly. The extensive

manual intervention required in the process makes it really slow and consequently the

existing systems have not been able to scale according to the increasing demands of

the networks. Hence the need for an anomaly based detection system which would

significantly reduce the requirements of labeled data has been felt.

Data Mining is the process of automatically discovering useful information in large

data repositories [7]. It includes methods like Classification, Clustering, Anomaly De-

tection and Association Analysis and it can help in automating the process of finding

novel and useful patterns that might otherwise remain unknown. These techniques

also provide capabilities to predict the outcome of future observations. Considering

these traits of the data mining techniques, it was felt that application of data mining

to the problem of intrusion detection would be a suitable course of research to tackle

the current issues with the problem domain.

1.7 Objective and Scope of Work

The research was carried out with the following objectives:

1. To study the performance of various existing data mining based intrusion de-

tection systems and compare their accuracy and efficiency.

2. To put efforts in the direction of development of a novel intrusion detection

8
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systems which may overcome some of the drawbacks of the existing systems.

For the purpose of this research, network based detection systems have been con-

sidered. However, the same could be applied to the problem of host based detection

systems with minor modifications. The current effort was concentrated on the analy-

sis and development of only the Traffic Model Generator and Incident Detector. The

other components of IDS, such as the Traffic Data Acquisition Module or the Re-

sponse Management Module were not considered. This was done to concentrate on

the core features of the intrusion detection process.

1.8 Outline of Thesis

The thesis consist of three chapters following this chapter:

Chapter 2: Proposed Work

A semi-supervised data mining based solution is discussed in this chapter. Along

with the the proposed algorithm, the preliminaries required are also discussed briefly.

Chapter 3: Simulation and Results

The details of the simulation and the results obtained through them are discussed

here. Major inferences obtained are also outlined in the chapter.

Chapter 4: Conclusion and Scope of Future Work

This chapter discusses the outcome of the research work, the significance of the pro-

posed solution and the scope for further improvements in the proposed methodology.

9



Chapter 2

Proposed Work

2.1 Problem Formulation

Under the supervised learning paradigm, the problem of intrusion detection can be

modeled as a classification problem. This approach consists of first obtaining labeled

traffic data and then training a classifier to discern between the normal traffic and

intrusions. Each record belonging to the training set consists of a certain number of

traffic features, such as the protocol type, service requested, size of payload etc. Each

of these records has a label indicating the class of traffic (normal/ intrusion) they

belong to. The requirement of labeled data for the training of the classifier can be

significantly reduced by the application of semi-supervised learning techniques.

The anomaly detection approach for intrusion detection is generally based on the

following assumptions

• Records belonging to normal traffic and intrusion are inherently different in

nature and hence can be separated by a suitable classifier.

• Records contained in the training set belong mostly to normal traffic data, with

the number of records pertaining to intrusions being comparatively small.

2.2 Support Vector Machines

Support Vector Machines (SVM) are a classification technique given by Boser et. al.

(1992) [8]. Based on the concept of optimal margin classifiers, this classification

10



2.2 Support Vector Machines Proposed Work

Figure 2.1: Infinite Decision Hyperplanes for a Binary Classification Problem

H1, H2 and H3 are three of the infinite possible decision hyperplanes. The hyperplane H3
(green) doesn’t separate the two classes and is not suitable for use in classification. The

hyperplane H1 (blue) does separate the two classes but with a small margin and H2 (red)
separates the two classes with the maximum margin.

Source - http://en.wikipedia.org/wiki/Support Vector Machines

method gives a very high accuracy rate for a large number of problem domains and

is highly suited for high-dimensional data.

2.2.1 Maximal Margin Hyperplanes

For the purpose of illustration, lets consider a data set that is linearly separable.

Given a set of labeled training data, we can find a hyperplane such that it completely

separates points belonging to the two classes. This is called the decision boundry. An

infinite number of such decision boundaries are possible (fig 2.1). Decision Boundry

margin refers to the shortest distance between the closest points on the either side

of the half plane (fig 2.2). It is evident by intuition and has been mathematically

proven[8] that the decision hyperplane with the maximal margin provides better gen-

eralization error. Support Vectors refers to training samples lying on the margins of

11



2.2 Support Vector Machines Proposed Work

Figure 2.2: Optimal Margin Classifier for Binary Classification Problem

The figure shows the maximum-margin hyperplane and margins for an SVM trained with
samples from two classes. Samples on the margin are called the support vectors.

Source - http://en.wikipedia.org/wiki/Support Vector Machines

the decision plane and the processs of training the SVM involves finding these support

vectors.

2.2.2 Linear SVM for Separable Case

Consider a binary classification problem consisting of N examples in the training

data-set. Each example is denoted by a record (xi, yi)(i = 1, 2, ...., N) where xi =

(xi1, xi2, ....., xid)T represents the set of attributes for the ith example. Let yi ∈ −1, 1

be the class labels for the two classes.

The decision boundary for the classifier would be written as

w.x + b = 0 (2.1)

Here w,b are the parameters of the SVM and the training process is concerned with

12



2.2 Support Vector Machines Proposed Work

finding the values for these parameters.

Considering two points xa,xb located on the decision boundary. We have

w.xa + b = 0, (2.2)

w.xb + b = 0 (2.3)

Subtracting the two equations we get

w.(xa − xb) = 0, (2.4)

For a point xb above the decision boundary, we have

w.xb + b = k, k > 0 (2.5)

For a point xw above the decision boundary, we have

w.xw + b = k, k < 0 (2.6)

Accordingly we have,

y = 1 if w.z + b > 0

−1 if w.z + b < 0

Considering two hyperplanes bi1 and bi2, such that they pass through the points

closest to the decision margin on each side of it, we have

bi1 : w.x + b = 1 (2.7)

bi2 : w.x + b = −1 (2.8)

It can be seen that the margin of the classifier would be given as

d =
2

w
(2.9)

The problem of training a SVM is that of optimizing the above equation, which

translates to the determination of the model parameters w and b based on the training

13



2.2 Support Vector Machines Proposed Work

examples. This problem is one of a convex optimization problems and is solved for

the Dual formulation using Lagranges Multiplier Method.

2.2.3 Linear SVM for Non Separable Case

To adapt the formulation of the decision boundary presented for the separable case,

we need to adopt the soft margin[7] approach. A slack variable ξ is introduced as

the penalty for deviating from the hard decision boundary. It the estimate of the

error for a particular training example. The modified formulation is given as:

w.xi + b ≥ 1− ξi if yi = 1,

w.xi + b ≤ −1 + ξi if yi = −1, (2.10)

where ∀i : ξi > 0

Considering the change in the formulation, the modified objective function is given

as:

f(w =
‖w2‖

2
+ C(

N∑
i=1

ξi)
k (2.11)

where C and k are user defined parameters. If we want to emphasize on the firm

boundary, we need to set the value of C to be small and if we want to optimize the

residual error, we set the value of C to be big. For most cases, the value of the

parameter k is assumed to be 1.

2.2.4 Non-Linear SVM and Kernel Functions

Cases where the decision boundary is non-linear require the data in the orginial space

x to be transformed to a new feature space φ(x). This transformation is brought

about by the transformation function φ which is chosen so that the decision bound-

ary in the transformed space is a linear one.

In most cases the determination of the actual transform function is difficult and

is not required. A manipulation called the Kernel Trick[7] is applied to compute

the similarities in the transformed space using the attributes in the original feature

14



2.3 Self-Training: A Semi-Supervised Learning Technique Proposed Work

space.

2.3 Self-Training: A Semi-Supervised Learning Tech-

nique

Traditionally machine learning has had two types of tasks i.e supervised learning and

unsupervised learning [9]. Supervised learning methods require a set of labeled exam-

ples, called the training set, over which the algorithm trains by adjusting its parame-

ters. Artificial Neural Networks, K-Means classifiers and Bayesian Belief Networks are

some of the examples of supervised learning methods.Unsupervised learning methods

attempt to find the inherent structure in the data, without the use of any previously

labeled data. Methods such as the various clustering algorithms and outlier detection

algorithms fall under the class of unsupervised learning methods.

Semi-Supervised learning is an amalgamation of the two previously discussed learn-

ing methodologies. In this paradigm, training process involves the use of unlabeled

data along with some labeled examples. Self-Training, also known as self-learning,

self-labeling or decision-directed learning is a wrapper-algorithm that uses a super-

vised learning. Intially it starts labeling the unlabeled points according to the model

learned with the help of the intial set of the labeled points. Thereafter a part of the

unlabeled points is labeled using the current model and the using the labels of those

points, retraining occurs and a new model is learned. This process is reapeated untill

the required model accuracy is achieved or the algorithm converges.

2.4 Intrusion Detection Using Self-Training SVM

Self-Training of SVM has been used in the past for applications such as recognition

of Transcription start sites[10], Pixel classification for Remote Sensing Imagery[11]

and EEG-based brain computer interface speller system [12]. A similar algorithm is

proposed for developing a Self-Training SVM for Intrusion Detection.
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2.4 Intrusion Detection Using Self-Training SVM Proposed Work

2.4.1 Algorithm

The formulation for a standard SVM for a binary classification problem is given as

min
1

2
‖w‖2 + C

N∑
i=1

ξi (2.12)

under the constraints

yi(w
Txi + b) ≥ 1− ξi

ξi ≥ 0, i = 1, ..., N,

where xi ∈ Rn is the feature vector for the ith training example. yi ∈ −1, 1 is the

class label of xi, i = 1, ..., N, C > 0 is a regularization constant. The pseudo code

for the Self-Training wrapper algorithm is given below:

Algorithm 1 Self-Training-SVM

Input: FI , FT and σ0

FI : The set of N1 labeled training examples xi, i = 1, ..., N . Labels of the
examples are y0(1), ..., y0(N)
FT : The set of N2 training examples for which the labels are unknown.
σ0: The threshold for convergence

Output: A Trained SVM

1: Train a SVM using FI and classify FT using the model obtained
2: k=2
3: while TRUE do
4: FN = FI + FT where labels of FT are the ones predicted using the current

model
5: Train a new SVM using FN and again classify FT

6: Evaluate objective function f(w(k), ξ(k)) = 1
2
‖wk‖2 + C

∑N1+N2

i=1 ξi
7: if f(w(k), ξ(k))− f(w(k−1), ξ(k − 1))) < σ0 then
8: break
9: end if

10: k=k+1
11: end while

The last trained SVM is considered as the final classification model. The proof of

convergence of the algorithm is given in Li et. al. [12]
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Chapter 3

Simulation and Results

3.1 Data-Set

The KDD Cup 1999 Dataset[13] was used for the purpose of this simulation.In 1998

MIT Lincoln Labs had prepared a data set under the DARPA Intrusion Detection

Evaluation Program[14]. The Third International Knowledge Discovery and Data

Mining Tools Contest, which was held along with the The Fifth International Con-

ference on Knowledge Discovery and Data Mining, used a version of the DARPA

Intrusion Detection Data Set. The data set, generated from the raw TCP dump data

had more than 40 features.

3.1.1 Features

The features broadly belonged to the following three classes:

• Basic Connection Features Some of these features were basic features of

the individual TCP connections, e.g. duration of the connection and type of

protocol ( udp, tcp etc. ).

• Content Features Content features which were determined using domain

knowledge. Examples of content features include number of failed login at-

tempts, login status etc.

• High Level Traffic Features Some of the features were high level traffic

features computed using a two-second time. Examples include the number of
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3.2 A LIBSVM Based Implementation Simulation and Results

connections to the same host as the current connection in the past two seconds

window, and the percentage of connections to the same service.

3.1.2 Attacks

The training set contained 24 known attacks whereas the testing set contained an

additional set of 13 novel attacks. Additionally the probability distributiion of the

test data was different from that of the training data. This was done to make the

simulation more realistic. The attacks simulated fall under the following four cate-

gories:

• Denial of Service (DoS)

• Unauthorized access from a remote machine (R2L)

• Unauthorized access to local superuser privileges (U2R)

• Probing

3.2 A LIBSVM Based Implementation

The procedure for simulating the Self- Training SVM can be divided into two phases-

Data Set Generation and Self-Training.

3.2.1 Data-Set Generation

During this phase, two sets of data sets are extracted from the KDD Cup ’99 Training

Set which consists of over 4 lakh records. The first set FI is a set of labeled records

and is used to train the initial SVM. The second set, FT is the set of unlabeled records

and is used to retrain the SVM model during the iterations of the algorithm 1. All

the 41 features of KDD Cup ’99 were used in the simulation.

For the purpose of this simulation, the size of FI was taken to be much smaller

than that of FT so that the efficiency of the proposed scheme in reducing the require-

ment of labeled data may be properly tested.
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3.3 Results Simulation and Results

The KDD Cup ’99 Test set consisting of over 3 lakh records was used as the

independent test set.

Additionally, the original data sets were scaled and converted to the libsvm format

by using the data mining software Weka [15].

3.2.2 Self-Training

The wrapper code based on the algorithm given in 1 called the respective LIBSVM

routines for SVM model training and class prediction. LIBSVM[16] developed by

Chang et. al. is a library for Support Vector Machines and can be easliy integrated

with C or JAVA codes. Its binaries can be called from virtually any language capable

of executing a system call.

A RBF Kernel exp(−γ ∗ |u− v|2) was used for training a cost based SVM and the

parameters for training ( c and γ ) can be determined either by a grid search or by

the model selection algorithm as given in Li. et. al. [12].

A detailed illustration of the simulation process is given in the fig: 3.1

3.3 Results

The simulation was run with various sizes of the labeled and unlabeled set, where

the maximum ratio between the labeled and unlabeled set was maintained to be 1:10.

This ratio was decided on an empirical observation of results obtained by Li et. al.

[12].

It was observed that the minimum size of labeled training set required for effective

Self-Training was around 500 records. For labeled sets having very few examples, e.g

50-60, the overall accuracy of detection either did not change or in some cases it got

reduced from its orginial value. This may be explained by considering the fact that in

case of limited labeled points in the original case, the decision boundary obtained may

not be accurate and upon use of the model on the unlabeled set, the points belonging

to the set may be classified incorrectly. This may further lead to a reduction in the
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3.3 Results Simulation and Results

Figure 3.1: Procedure for Simulation of Intrusion Detection on the KDD ’99 Data Set
Using Self Training SVM
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3.3 Results Simulation and Results

overall accuracy of detection.

Results obtained for a labeled set of 500 records with an unlabeled set of 5000

records is presented in figure 3.2. Results for another simulation with a labeled set of

5000 records and unlabeled set 25000 records is given in figure 3.3.

It can be inferred from the results that Self-Training process as given in algorithm 1

converges and for the given examples, it converges pretty quickly ( after around 6 it-

erations in both the cases).

The degree of improvement in the detection accuracy with the iterations of the

Self-Training algorithm depends on the size of the labeled and unlabeled training set.

This result can be inferred from the fact that after 6 iterations, the change in the

detection accuracy for the simulation with 5000 labeled records set is almost double

that of the simulation with 500 labeled records set. This observation is also reaffirmed

by the fact that for very small labeled training sets, there was virtually no positive

improvement in the detection accuracy.

The results also show that the the overall accuracy is most sensitive to the size of

the labeled set. In case of the simulation with 500 labeled records, the final detection

accuracy was around 75.5% whereas for the simulation with 5000 labeled records, it

was found to be around 86%.

Finally the results validate the hypothesis that Self-Training can be used for re-

duction of the labeled training set size in the domain of Intrusion Detection as well. A

reduction of upto 90% has been achieved in the number of labeled training examples

required. A comparison of the performance of Standard SVM and Self-Training SVM

has been given in figure 3.4.
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3.3 Results Simulation and Results

Figure 3.2: Self Training SVM with a Labeled Training Set of Size 500 and Unlabeled
Training Set ( Self-Training Set) of Size 5K

Figure 3.3: Self Training SVM with a Labeled Training Set of Size 5K and Unlabeled
Training Set ( Self-Training Set) of Size 25 K
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3.3 Results Simulation and Results

Figure 3.4: Comparison of Standard SVM and Self-Training SVM
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Chapter 4

Conclusions and Future Work

A new method for Intrusion Detection under the Semi-Supervised Learning paradigm

has been presented and evaluated in this thesis. The correctness of the algorithm

and its effectiveness for the Intrusion Detection Problem domain has been verified

by simulation on the standard KDD Cup 1999 dataset. Further, the given algorithm

achieves good results in reduction of requirement of labeled training data. In the sim-

ulations run for the purpose of this thesis, a reduction of upto 90% was achieved. This

value may vary from case of case, depending upon the compositions of the labeled

training set.

The work presented in this thesis may be extended to the case of host based

intrusion detection. The performance of this method may also be compared with

that of other supervised learning approaches. Additionally the application of Self-

Training scheme to other classification techniques used in intrusion detection such as

the Bayesian Belief Network can be worked upon.
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