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ABSTRACT 

 

 

Yildiz, Emrah Tolga. M.S.M.E., Purdue University, December 2010. Nonlinear 
Constrained Component Optimization of a Plug-in Hybrid Electric Vehicle. Major 
Professor: Sohel Anwar. 

 

 

Today transportation is one of the rapidly evolving technologies in the world. With 

the stringent mandatory emission regulations and high fuel prices, researchers and 

manufacturers are ever increasingly pushed to the frontiers of research in pursuit of 

alternative propulsion systems. Electrically propelled vehicles are one of the most 

promising solutions among all the other alternatives, as far as; reliability, availability, 

feasibility and safety issues are concerned. However, the shortcomings of a fully electric 

vehicle in fulfilling all performance requirements make the electrification of the 

conventional engine powered vehicles in the form of a plug-in hybrid electric vehicle 

(PHEV) the most feasible propulsion systems. The optimal combination of the properly 

sized components such as internal combustion engine, electric motor, energy storage unit 

are crucial for the vehicle to meet the performance requirements, improve fuel efficiency, 

reduce emissions, and cost effectiveness.  

 

In this thesis an application of Particle Swarm Optimization (PSO) approach to 

optimally size the vehicle powertrain components (e.g. engine power, electric motor 

power, and battery energy capacity) while meeting all the critical performance 

requirements, such as acceleration, grade and maximum speed is studied. Compared to 

conventional optimization methods, PSO handles the nonlinear constrained optimization 

problems more efficiently and precisely.  
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The PHEV powertrain configuration with the determined sizes of the components has 

been used in a new vehicle model in PSAT (Powertrain System Analysis Toolkit) 

platform. The simulation results show that with the optimized component sizes of the 

PHEV vehicle (via PSO), the performance and the fuel efficiency of the vehicle are 

significantly improved. 

 

The optimal solution of the component sizes found in this research increased the 

performance and the fuel efficiency of the vehicle. Furthermore, after reaching the 

desired values of the component sizes that meet all the performance requirements, the 

overall emission of hazardous pollutants from the PHEV powertrain is included in the 

optimization problem in order to obtain updated PHEV component sizes that would also 

meet additional design specifications and requirements. 
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1 INTRODUCTION 

 

 

A hybrid electric vehicle is a type of hybrid vehicle, which utilizes the combination of 

a conventional internal combustion engine propulsion system and electric propulsion 

system. The existence of electric propulsion system is intended to enhance the fuel 

economy, reduce pollutant emissions and/or improve the performance. 

  

The idea of hybrid electric vehicle (HEV) belongs to Prof. Ferdinand Porsche in 

1899. The next 30 years manufacturers made various concepts. This technology was not a 

center of interest after the early development period for a long time. However, in 1990s, 

researchers and manufacturers started intensely leaning on improving the HEV 

technology. Its potential of being highly fuel-efficient and significantly low levels of 

emissions made this technology one of the brightest research subjects of the era. 

 

Plug-in hybrid electric vehicle (PHEV) is a modified version of an HEV in which the 

vehicle has a relatively larger energy storage system (ESS) when compared with HEV 

that can be charged by external sources as well as the internal sources such as 

regenerative braking, generator, etc. In order to minimize the usage of gasoline engine 

and to utilize more of the energy stored in the energy storage system (ESS), the energy 

from the utility grid is used to recharge the ESS with plug-in charging capability. Thus, 

Plug-in Hybrid Electric Vehicle (PHEV) holds the promise to further improve the energy 

efficiency and reduce environmental cost of a vehicle. GM manufactured the first PHEV 

in 1969 that was using lead acid batteries as ESS [1]. However, the last decade was the 

bright era of these vehicles. Due to its significant improvement in fuel consumption, 

manufacturers are increasingly interested in improving PHEVs. 
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1.1 Problem Statement 

As mentioned earlier the powertrain components are crucial for the vehicle 

performance, fuel efficiency and emissions. Configuring the right sizes of powertrain 

components to meet designated goals or to improve the performance is a complex and a 

significant problem to resolve. In order to determine the sizes of these components, such 

as; engine, electrical motor and energy storage system, various methods have been used 

so far and some significant achievements were made. 

  

Increased power of mathematical computations and related software resulted in 

various advanced techniques and solutions methods for optimization problems. Particle 

Swarm Optimization (PSO) is one of such methodologies for solving nonlinear 

constrained optimization problems such as the problem under consideration. 

 

The increase of energy storage capacity of ESS consequently increases the cost and 

mass of the vehicle; on the other hand, the increase of the engine size is somewhat 

redundant if the available configuration is sufficient to provide the required range, while 

maintaining the performance requirement set by the current commercial standards. To 

address these issues, which involve multiple nonlinear boundary conditions, Particle 

Swarm Optimization (PSO) is applied to determine the optimal sizing of components 

(e.g. engine power, electric motor power, battery energy capacity) for a PHEV vehicle in 

this research. The cost function and boundaries are determined by the dynamic equation 

representation of the performance requirements and design constraints. Maximum 

possible sizing values of three most significant components, engine, electric motor and 

the battery, are used in determining the major nonlinear constraints of the optimization 

problem. 

 

Therefore, a search for an optimal configuration of PHEV powertrain components is 

the main essence of this work. The increased importance of this specific type of 

combined propulsion systems, also, made this area a promising research subject. Thus, a 
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PSO algorithm is developed to find the optimal sizes of the powertrain components to 

achieve the desired performance objectives. 

 

 

1.2 Literature Survey 

There has been lots of research done in this field for both HEVs and PHEVs. Since 

the fuel consumption, emission levels and performance requirements depend on the 

powertrain components and configuration of these vehicles, component sizing was one of 

the branches that researchers gravitated around.  

 

Assanis did a component optimization on series and parallel HEVs separately by 

integrating vehicle and engine simulations. He used a modified feed forward model for 

the engine simulation to link it with the vehicle simulation. He found the optimal sizes of 

components by using a gradient free algorithm to minimize the fuel consumption while 

meeting the performance requirements [2]. 

 

Fellini does an optimization of component sizes for hybrid diesel-electric vehicles. He 

derived the mathematical model of the vehicle and the powertrain components instead of 

using vehicle models. This allowed him to use different optimization tools for his sizing. 

Making a comparison of different algorithms the optimum component sizes were 

deliberately derived in this research [3]. 

 

Galdi used a genetic-based methodology to size major components of an HEV. In this 

research, reduction of pollutant emissions was included in the objective as well as the 

fuel economy improvement. Also, critical energy flow management parameters were 

integrated into the cost function to better enhance the optimal component sizes. The 

research aimed to minimize an objective function which takes into account not only 

technical specifications but also environmental, social, and economic aspects [4]. 

Montezari did another component sizing research with genetic algorithm. In his research 

he used parallel HEV drivetrain and computed his simulations by three different drive 
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cycles to compare them in order to reach and test the optimum sizes of the drivetrain 

components [5]. 

 

Zhengli did a research on powertrain design by optimal sizing of a series HEV using 

an adaptive based hybrid genetic algorithm [6]. Similarly, Liu, using a hybrid genetic 

algorithm searched for the optimal sizes of components for a series HEV [7].  

 

Hasanzadeh introduced an HEV simulation tool with an HEXA optimal sizing 

method combining optimization algorithm. Then, he developed a real-coded, adaptive 

based hybrid genetic algorithm and applied to the optimal sizing of a series hybrid 

electric vehicle. He used ADVISOR2002 as the vehicle simulator [8]. 

 

Markel, in his research, he used equivalent fuel consumption method, offline for 

computing a compromise solution to generate optimum power distribution between the 

hybrid components for a given driving cycle. Then he used ADVISOR for simulations to 

find the optimal component sizes by genetic algorithm [9]. 

 

Wu did an optimization on components sizes for Parallel HEVs using particle swarm 

optimization technique [10]. Another Parallel HEV powertrain component sizing 

optimization research was done by Gao [11]. He used global optimization algorithms, 

DIRECT (Divided RECTangles), simulated annealing, and genetic algorithm and 

compared the results of those three. 

 

 

1.3 About This Thesis 

A large number of optimization methodologies and different drivetrain configurations 

of PHEVs are explored in this research. It was observed that there are different paths that 

can be taken to solve this component optimization problem of which PSO methodology 

was found to be most attractive. 
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Chapter 2, Modeling, the mathematical modeling of a PHEV is explained in terms of 

each major component, such as; engine, electric motor, energy storage system, 

transmission, differential as well as ground contact and the driver as they are used in the 

PSAT software for PSO optimization in search for optimal component sizes.  

 

Chapter 3, Problem Formulation, explains the development of the optimization 

algorithm and the cooperation of the simulation model along with this optimization tool. 

 

 Chapter 4, Simulation, describes the construction of the simulation model, the tools 

that are used to build the vehicle model and the Matlab script that helps the two powerful 

computation algorithms, optimization method and simulation model, work together in 

harmony. Finally, the results of the optimum component sizes, the comparison of the 

baseline model with the optimized model and the improvements in the PHEV model are 

presented in the secondary section of this chapter.  

  

Chapter 5, Conclusion and Recommendations, a conclusion is drawn that 

states achievements that are made with this research and gives some recommendations to 

further enhance the research results for possible better achievements. 

 

Finally, in Appendices, the script that is written in MATLAB and the objective 

function values are posted. 
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2.1 Driver Model  

Driver component designed in the PSAT simulation model is used to imitate the 

actions of a real driver to follow a specific pattern of an already determined drive cycle. 

In this thesis Urban Dynamometer Driving Schedule (UDDS) drive cycle of the 

Environmental Protection Agency, US (EPA) is used. The model is constructed as a PI 

controller where the proportional gain ܭ௣ and the integral gain ܭ௜ are found 

experimentally in the software. Equation 2.1 represents the driver mathematical model in 

which it is assumed to be an automatic transmission usage. The outputs of the driver 

model are the demanded torque and the demanded speed that are shown as follows: 

߬ௗ௠ௗ ൌ ௣݁ܭ ൅ ௜ܭ න݁	݀ݐ 
(2.1)

߭ ൌ 	 ߭஽஼ (2.2)

Here the speed error is: 

ݎݎܧ ൌ 	߭ െ ߭ௗ௠ௗ			 (2.3)

 

Furthermore, in order to overcome the stability and oscillating issues some time delay 

is added to the torque command generated by the driver model response. 
 

 

2.2 Vehicle Model 

The mathematical model of the vehicle is constructed considering the three major 

phenomenons: grade, aerodynamic drag and rolling resistance. 

  

Grade force: First of all, the grade force ܨ௚	 that the vehicle has to overcome has a 

significant impact on the dynamic model of the vehicle. This grade force is calculated 

using Newton’s second law of motion, Equation 2.4. Depending on various variables, 

such as; vehicle mass and grade angle, the grade force can change, which has a large 

impact on the force required to drive the vehicle, and can result in changing the accuracy 

of the dynamic model.  
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Rolling resistance: The last one is the rolling resistance, which relatively has a small 

impact compared to the other two. This resistive force is created because of the 

deformation of the tires at the point of the contact with the ground during rolling motion. 

This is calculated by Equation 2.6 [15]. 

ோோܨ ൌ ݃݉௩ሺܭଵ ൅ ଶ߭ሻܭ cos ሺtanିଵሺՅሻሻ (2.6)

Here ܭଵ and ܭଶ are the coefficients of the rolling resistance that are found experimentally 

and ߭ is the vehicle velocity at a given instant time. 

  

In PSAT model the rolling resistance and the aerodynamic drag force are 

approximated as a second order polynomial by using above two equations and empirical 

data as shown in Equation 2.7. 

஺ோோܨ 	ൌ min	ሺܣ଴,
଴ܣ
0.05

ሻ߭ ൅ ଵ߭ܣ ൅ ଶ߭ଶ (2.7)ܣ

where ܨ஺ோோ is the combined resistive force (Rolling Resistance and Aerodynamic Drag) 

and the constants ܣ଴, ܣଵ, ܣଶ coefficients are the combined coefficients that is found 

experimentally. The first term in this equation decreases at lower speeds therefore it 

expresses the rolling resistance, the second term expresses the higher order coefficients of 

rolling resistance and some other parasitic losses whereas the third term represents the 

aerodynamic drag. 

  

Finally, the required force to drive the vehicle at the demanded speed is calculated by 

Equation 2.8. ܨௗ௠ௗ is the demanded force. 

ோாொܨ ൌ 		 ஺ோோܨ ൅	ܨ௚	 ൅	ܨௗ௠ௗ (2.8)

 

 

2.2.1 Engine 

The engine used in this vehicle model is a generic spark ignition (SI) engine model, 

using gasoline as fuel to produce mechanical energy. Using the drive cycle parameter 

values the required torque and speed, as a function of time, is computed. These demand 

torque and demand speed values are controlled in the vehicle control unit model and 
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afterwards feed to the engine control unit model. This specific engine control module 

model controlled the engine to operate in the desired torque and speed ranges. In PSAT, 

the engine is not modeled as a very detailed, high-end dynamic model. The inertial losses 

and the thermal losses are considered for the control purposes and the parasitic loads on 

the engine, both mechanical and electrical, are assumed to be constant. The following 

equations, Equation 2.9 and Equation 2.10, are used to calculate the torque and speed 

values that are available.  

߬௧௢௧௔௟_௘ ൌ 	 ߬௘ ൅ ௘ܫ
݀߱௘
ݐ݀

൅ ܮ  (2.9)

߱ோாொ_்ை்஺௅ ൌ 	߱ோாொ (2.10)

Here, ߬௘ is the engine torque, ܫ௘ is the inertia of the engine, ܮ is the constant value that is 

assumed to represent the mechanical and electrical parasitic losses. ߱ோாொ is the required 

angular velocity. 

 

The fuel consumption is determined through a 2D look up table based on engine 

speed and engine torque. The emission levels of hydrocarbon (HC), carbon monoxide 

(CO) nitrogen oxide (NOx) and particulate matter (PM), as well as the oxygen content in 

the exhaust gas, are also estimated through 2D lookup tables as a function of engine 

speed and engine torque. The 2D look up tables that are used in estimating these 

important parameters are all defined empirically in the PSAT software. 

 

 

2.2.2 Electric Motor 

Electric motor modeled in a way that the model itself includes the motor’s torque 

speed-dependent capability and the motor losses due to its inertia. Power losses in terms 

of efficiency are specifically determined by empirical look up tables in the PSAT 

software. The motor model constructed by using two dynamic equations shown below: 

߬௧௢௧௔௟_௠ ൌ ߬௠ ൅ ௠ܫ 	
݀߱௠
ݐ݀

 (2.11)

߱௠ ൌ	߱ோாொ (2.12)
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ܸ ൌ ௕ܲ

ܫ
ൌ ைܸ஼ െ	ܴ௕ܫ 

(2.13)

⇒	ܴ	௕ܫଶ	 െ ைܸ஼	ܫ ൅ ௕ܲ ൌ 0 (2.14)

From Equation 2.36, Equation 2.15 is derived: 

ܫ ൌ ைܸ஼ െ	ඥ ைܸ஼
ଶ െ 	4 ௕ܲ

2ܴ௕
 

(2.15)

where ைܸ஼ and ܴ௕ are found from 2D look up tables determined experimentally. 

 

To calculate the bus voltage, again, Kirschoff’s voltage law is used,  

ܸ ൌ 	 ைܸ஼ െ ܴ௕(2.16) ܫ

 

The maximum allowable power is determined using look up tables that are 

constructed through manufacturer’s battery specifications. 

 

The battery pack consists of number of battery modules connected in series; these 

modules are constructed by certain number of cells that are connected in a certain series 

and/or parallel pattern. Number of battery modules, number of cells and the pattern they 

are combined are determined by performance requirements of the energy storage system 

via various optimization techniques. Columbic inefficiency is used to model the power 

losses- I2R losses.  

 

The State of Charge (SOC) of the battery is calculated by integrating the current on 

the time interval.  The SOC value corresponding to the optimum set of operating point 

would then be recorded as previous SOC value for the next time interval. Below is the 

equation that is used to calculate SOC for each time interval.   

௞ߛ ൌ
1

ࣝ௠௔௫
න ݅dݐ
௧ୀ௞

௧ୀ௞ିଵ
൅  ௞ିଵߛ

(2.17)

where ߛ	is	SOC, ࣝ௠௔௫ is maximum ampere-hour capacity of battery, ݇ is discrete time.  
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2.2.4 Continuous Variable Transmission 

The Powersplit drivetrain configuration used in this project requires Continuous 

Variable Transmission (CVT) because of its internal dynamic structure. As mentioned in 

the earlier sections of this chapter, planetary gear set is used for speed coupling in which 

the planetary gear is torque coupled with the motor to transfer the power generated to the 

drivetrain. The sun gear in the gear set is connected to the generator, which converts 

mechanical energy to electrical energy, also, is defined as ‘Motor 2’. Moreover, the 

engine is connected to the carrier gear and the motor is connected to the ring gear of the 

gear set. 

 

Equation 2.18 shows the motor torque in the PSAT model.  

߬௠ ൌ 	 ߬௥ െ
ሺߙଵ߬௚ ൅ ଶ߬௘ሻߙ

ଷߙ
 

(2.18)

where ߬௠ is motor torque, ߬௚ is the generator torque, ߬௘ is the engine torque and ߬௥ is the 

ring torque. The coefficients ߙଵ, ߙଶ, ߙଷ are experimentally found by the PSAT tool to 

simplify the planetary gear set ratios and parasitic losses [15]. 

 

 

2.3 Ground Contact Model 

 

 

2.3.1 Wheels and Axle 

In PSAT wheels and axle are modeled as a single component in which a pair of 

wheels are combined with an axle and attached to the vehicle.  Losses due to the slip are 

neglected by PSAT tool; instead the tool computes the angular wheel speed from actual 

vehicle speed assuming that they are equal. For simplification, the braking torque and 

inertia are added corresponding to all the wheels. The model kinematics equation is 

shown below: 

߬௔ ൌ ൫ܨ஻ െ	ܨோாொ൯ݎ௪ ൅ ௔ܮ ൅ ௪ܫ
݀߱௪
ݐ݀

 (2.19)
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 where ߬௔ is the torque acting on the axle, ܨ஻ is the equivalent break torque of the wheels, 

 ௪ is the wheelܫ ,௔ is the lossesܮ	,௪ is the radius of the wheelݎ ,ோாொ is the required forceܨ

inertia and ߱௪ is the wheel angular velocity.  

 

 

2.3.2 Differential 

The connection between the transmission and the wheel axle is established with this 

component. Its role is to distribute transmission power over the wheels through the axle 

in order to eliminate the slip during a turn. Due to this component, the slip losses are 

reduced in significant amounts. That is the reason the PSAT tool neglected the slip losses 

for the wheel and axle model. However, losses due to inertia and the component itself are 

modeled in the differential mathematical model. Equation 2.20 and Equation 2.21 which 

are shown below explains the dynamics of the differential torque and the differential 

angular velocity as: 

߬ௗ ൌ 	
߬௔
Ըௗ

൅	ܫௗ 	
݀߱ௗ

ݐ݀
	൅	ܮௗ 

(2.20)

߱ௗ ൌ 	Ըௗ߱௪ (2.21)

Here ߬ௗ is the differential torque, ߬௔ is the axle torque, Ըௗ is the differential gear ratio, ܫௗ 

is the inertia of the component itself, ߱ௗ is the differential angular velocity and ܮௗ is the 

loss due to the differential. 
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3 PROBLEM FORMULATION 

 

 

The problem arises from the search for a better fuel economy whilst meeting the 

performance requirements. The search for a better configuration of drivetrain components 

in terms of fuel economy and better performance is an open-ended research subject. 

Continuous improvement in this field is a significant technical achievement that should 

be taken care of. 

 

Since the vehicle itself is dynamically, highly, nonlinear and most of the drivetrain 

components in a PHEV, directly or indirectly, has an effect on each other, optimization 

process of the major powertrain components have to be done via proper methodology to 

represent effects of each component modification on the others. In order to explain this 

effect briefly, for example, if the engine on the vehicle is decided to be more powerful, 

changing the existing engine with a 20% more powerful engine will increase the total 

mass of the vehicle because the bigger engine’s block mass will be higher than the 

replaced one. Therefore, each and every component’s effect has to be considered. 

 

The objective of using an optimization tool is, as briefly explained above, to express 

the effects of all the components on the others and on themselves mathematically in the 

optimization methodology structure [11]. 

 

After constructing the methodology mathematically in detail, a Matlab script can be 

used to collaborate with PSAT simulation software with the PSO script to search the 

optimum points in the solution space. The solution space is constructed through
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dynamic equations related to the performance requirements, such as maximum 

acceleration, maximum cruise speed, and grade, which is explained briefly later in this 

chapter.  

 

In the previous studies, researchers have focused on mostly HEVs and various 

methodologies. This research is the first attempts of its kind to apply PSO methodology 

to find the optimal sizes of the powertrain components of a PHEV. This research shows a 

different path of utilizing and combining a well-known optimization tool with a relatively 

newer technology type of hybrid vehicles. 

 

 

3.1 Optimization Methodology 

This section of problem formulation chapter is explained in two different subsections. 

The first one is advantages of PSO tool and why it is chosen for this project and the 

second subsection describes briefly the PSO optimization tool. 

 

 

3.1.1 Advantages of PSO  

Using gradient-based algorithms the optimization problem could be solved [3]. 

However, since these algorithms depend on the gradients to find the optimum solution, 

they do not always give the global maximum or minimum as the solution. Therefore, 

derivative free algorithms such as Genetic Algorithm (GA), DIRECT, Dynamic 

Programming, Simulated Annealing, Particle Swarm Optimization, etc. can be used. 

Since they aren’t gradient-based, they provide global solution to the optimization 

problem. 

 

Most evolutionary techniques mentioned above shares some common procedure, such 

as: random generation of initial population, reckoning of a fitness value for each subject, 

reproduction of the population. However, PSO does not have genetic operators like 

mutation and crossover [14]. Particles update themselves with the internal velocity. Also, 
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each particle has a memory, which is significant for the algorithm. The information 

sharing mechanism of PSO tool is significantly different than the others. Instead of 

having massive amount of variables to tell the system about the previous iteration, PSO 

has just one variable to rule that functionality to the algorithm. It is simply a one-way 

information sharing mechanism. Another major advantage of PSO tool is that the method 

only searches for the best solution and at the end all the particles converge to the best 

solution quickly in most cases [23].  

 

 Strengths and advantages of the PSO tool mentioned in above paragraphs over the 

other gradient based algorithms, made this tool the most convenient optimization 

algorithm to work with a highly nonlinear and component dependent system like PHEV. 

 

 

3.1.2 Particle Swarm Optimization 

Particle Swarm optimization was developed by Kennedy and Eberhart in 1995 [14]. 

The algorithm is based on the social behavioral model of the society, similar to the social 

behaviors of bird flocking or fish schooling; in other words, it is based on the stochastic 

optimization technique.  The difference of this method from the other evolutionary 

computation techniques, like Genetic Algorithm (GA), is that it does not use evolution 

operators, such as mutation, crossover and etc. The system is initialized with a population 

of particles with their own position and velocity values in n-dimensional space. Each 

particle in the solution space is a possible optimum solution. The particles fly through the 

solution space by following current optimum particles using the equations defined by the 

PSO algorithm as shown below: 

ܸሺ݇ ൅ 1ሻ ൌ ሺ݇ሻܸݓ ൅ ܿଵݎଵ൫ݐݏ݁ܤ݌ሺ݇ሻ െ ሺ݇ሻ൯ݔ ൅ ܿଶݎଶ൫݃ݐݏ݁ܤሺ݇ሻ െ ሺ݇ሻ൯ (3.1)ݔ

ሺ݇ݔ ൅ 1ሻ ൌ ሺ݇ሻݔ ൅ ܸሺ݇ ൅ 1ሻ (3.2)

 

For the next iteration the velocity of each particle is calculated by Equation 3.1 and 

Equation 3.2 is the position of the particle for the next iteration. Here ܿଵ is the cognition-

learning rate, ܿଶ is social learning rate of particle and ݓ is the inertial weight, which 
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enhances the performance of PSO in various applications [11].  ݎଵ and ݎଶ are random 

numbers between 0 and 1.  ݐݏ݁ܤ݌ is the particles’ own best position and ݃ݐݏ݁ܤ is the 

global best position determined by comparing the ݐݏ݁ܤ݌ of all particles.  The particles 

will be updated using these equations iteratively until the optimal solution is obtained by 

convergence of all the particles. Since the method requires very few parameters, this is a 

significant advantage over the other methodologies in terms of computation time and 

relatively less amount of variable determination. 

 

This particular PSO technique was developed for unconstrained optimization 

problems. However, researchers have developed various versions of PSO algorithm, 

which can also be valid for constrained optimization problems. Gregorio proposed a PSO 

approach with variation in velocity computation formula, turbulence operator and 

different mechanism to handle the constraints [24]. Another approach, the penalty 

function approach, can be used for solving constrained optimization problems, was 

shown by Parsopuulos [15]. An additional penalty function is added to the fitness 

function to replace the constraints, in other words, expressing the constraints as a penalty 

function to determine the solution space boundaries and to limit the particles from flying 

out the boundaries. 

 

A different approach by Hu and Eberhart was proposed as well. They suggested a 

method with some modifications in the PSO algorithm in [24]. The two modifications to 

the original PSO algorithm are: all the particles have to be reinitialized in the feasible 

space and also only the feasible points are assigned for the ݃ݐݏ݁ܤ and ݐݏ݁ܤ݌ variables. 

Therefore, the PSO algorithm always starts and gets values in the constrained region. 

Thus, the motion of the particles is always in the feasible solution space. 

 

Since the components optimized in this research are restricted by physical limitations 

and the availability and/or feasibility of some specific components forced the PSO tool to 

be used with constraints. Hu and Eberhart’s modified PSO algorithm is used to express 

the constraints. The boundaries of the components that are optimized are determined by 
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mathematical equations that are found by expressing the dynamics of the performance 

requirements. The way in which the methodology is constructed will be examined in 

detail in the following sections of this chapter. 

 

Figure 3.1 shows the flow chart of the constrained optimization PSO methodology 

that explains the strategy and the logic behind the modified technique briefly.  



 

Figuree 3.1 Flow ch

 

hart of consttrained PSO algorithm 

 

22 



23 
 

3.2 Baseline Vehicle Specifications and Performance Requirements 

In search for the performance requirements, the 2008 Toyota Prius general 

performance requirements are taken into account. This information can be found in 

Toyota Motor Company’s official website. These performance requirements are 

necessary to determine the constraints and solution space boundaries for the optimization 

methodology. Table 3.1 shows the performance requirements for the vehicle. In the 

following sections of this chapter a brief explanation of the derivation of mathematical 

constraint equations out of these performance requirements are explained. 

 

Table 3.1 Performance requirements of the baseline vehicle 

 

 

Like every optimization problem, the search for the optimal component sizes of the 

drivetrain components of PHEV needs an initial start points for each objective function 

variable. This section describes the details of the specifications of the baseline vehicle 

that is used in this project in terms of each component. The initial points, that is to say, 

the baseline specifications are taken from a 2008 Toyota Prius. The values of the 

parameters are the general public information that can be found on Toyota’s official 

website.  

 

 

  

Performance Requirement Value Unit 

Maximum speed 104 mph 

Maximum grade at 60 mph speed 6 % 

Average time to reach from 0-60 mph 10 seconds 
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3.2.1 Engine Specifications 

As mentioned before in general, the engine model and the specifications of the 

baseline component used is 2008 Toyota Prius engine whose specifications are given by 

the following list: 

 Inline 4-cylinder Double Overhead Camshaft (DOHC)  

 Displacement: 1,497 cc  

 Compression Ratio: 13.0:1 

 Peak power: 51 kW at 4,500 rpm 

 Peak Torque: 82 lb.-ft. at 4,200 rpm 

 

 

3.2.2 Electric Motor Specifications 

The electric motor is the secondary power unit which provides the in city highly 

efficient operations points by eliminating the inefficient operating regions of the SI 

engine. This phenomenon makes the motor extremely important. Therefore, the initial 

points of the motor specifications that are given in the following list are very critical: 

 Permanent Magnet 

 Capacity: 6.5 amperes 

 Peak power: 52 kw at 400 rpm 

 Peak Torque: 258 lb./ft. (350 Nm) 0-400 rpm 

 

 

3.2.3 Energy Storage System Specifications 

Unlike the other components the energy storage system used in this project is 

different than the one used in Toyota Prius. Since Prius is an HEV, its battery 

specifications are not adequate to be used in this research as a PHEV battery pack. The 

battery pack that is used in this optimization research is a relatively bigger capacity 

battery pack. A123 L5 Lithium Ion Nanophosphate battery is used instead of the Prius’ 

OEM battery pack. The specifications are shown in the following list: 
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 Elements Per module → 10 cells in parallel, 7 series elements 

 Number of Modules → 5  

 Cell Normal Volt → 3.5 

 Cell Max/Min Volt → 3.5/2.5  

 

 

3.3 Construction of the Methodology 

An optimization problem consists of two major parts; first one is the objective 

function, which is also called the cost, or the fitness function. To be consistent with all 

the other chapters and sections, in this thesis it is called the objective function. The 

second part is the constraints, which determine the solution space boundaries. In the 

following subsections of this section, the mathematical derivation of these objective 

function and constraint equations are examined in detail. 

 

Below is the general mathematical expression for the optimization problem. 

݉݅݊
ܺ߳Ω

ࢄ								ሻࢄሺܨ	 ൌ ሾ ெܲ, ாܲ , ,ܯܤܰ  ሿ்ܥܨ

.ݏ ሻࢄ௨ሺܥ					.ݐ ൐ ݑ					0 ൌ 1, 2, 3… , ݇ 

where: 

 ࢄ is the column vector consists of objective function variables 

 Ω is the solution space. 

 ெܲ is the power of the electrical motor. 

 ாܲ is the power of the engine. 

 ܰܯܤ is the number of the battery modules. 

 ܥܨ is the fuel consumption. 

 ܥ௨ nonlinear functions of the design constraints (performance requirements) 
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3.3.1 Objective Function 

Objective function is constructed by the size parameters of the components that will 

be optimized. Minimization of this function is required to find the optimal points of the 

component sizes in the boundaries whilst trying to reach the minimum fuel consumption. 

In the PSO optimization process the variables provide an objective function value. After 

adequate amount of iterations, the objective function value starts to converge to some 

finite number when the optimization tool and the variables to be optimized reach 

saturation and that point is called the optimum value or the global minima. 

 

The objective function includes the electric motor power, number of battery modules 

and fuel consumption [6]. All four variables are normalized and weighted for the 

objective function construction. The normalization process is required to bring down all 

the variables to one level because the addition of the process requires the addition of all 

those four major variables in one level. The following equation represents the objective 

function: 

ሺܨ ெܲ, ாܲ , ,ܯܤܰ ሻܥܨ ൌ ଵݓ	
ெܲ

ெܲ,௠௔௫
൅ ଶݓ

ாܲ

ாܲ,௠௔௫
൅ ଷݓ

ܯܤܰ
௠௔௫ܯܤܰ

൅ ସݓ
௠௔௫ܥܨ

ܥܨ
 

(3.1)

Here the parameters representing the components; ெܲ, in kW, peak power of the electric 

motor, ாܲ, in kW, peak power of the engine and ܰܯܤ, number of battery modules are 

aimed to be minimized and as it can be seen, they are directly proportional to the 

objective function value. However, on the other hand, ܥܨ, representing the fuel economy 

in terms of miles per gallon is reversely proportional to aim increasing the mileage of the 

vehicle. Also, ݓ௜ is the weights of the objective function variables, ݅ = 1,2..,4. The weight 

values are determined via trial and error during the optimization process by observing the 

convergence rate and various objective function values. 

 

 

3.3.2 Constraints 

Boundaries are determined by the dynamic-equation representation of the 

performance requirements and design constraints. Maximum possible sizing values of 
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three most significant components, engine, electric motor and the battery, are used in 

determining the major nonlinear constraints of the optimization problem. In order to size 

the components, as mentioned earlier, parameters for the sizes of the drivetrain 

components are chosen as the power of the engine and the motor and for the energy 

storage system, the capacity converted to number of battery modules. Each parameter is 

examined in terms of two sections; one is the lower boundary, i.e. the minimum end and 

the other one is the upper boundary, i.e. the maximum end. A brief description of how the 

constraints are derived mathematically, are mentioned in the following subsections. 

 

 

3.3.2.1 Engine Constraints 

The minimum power required from the engine can be calculated with mean cruise 

speed. The following equation represents the minimum engine power: 

ாܲ,௠௜௡ ൌ
1
்ߟ
൫݂݉݃ݒଵ ൅ 1

2ൗ ଵଷ൯ (3.2)ݒܣௗܥߩ

where ்ߟ is the powertrain efficiency, m is mass of the vehicle, ݃ is the gravitational 

acceleration, ݂  is the coefficient of rolling resistance, ݒଵ is the 6% grade speed, ߩ is the 

air density, Cd is the air drag coefficient, ܣ is the frontal area of the vehicle, ݒଵ is the 

mean cruise speed. 

 

The maximum required power for the engine can be determined by either at the 

maximum cruise speed or on the path with a slope at a constant speed going uphill. These 

values are computed and the maximum value amongst each other is chosen. Equation 3.3 

shows the maximum function and Equation 3.4 and Equation 3.5 show the determination 

of the two values: 

ாܲ,௠௔௫ ൌ max൫ ாܲ,ଵ, ாܲ,ଶ൯ (3.3)

ாܲ,ଵ ൌ
1
்ߟ
൫݂݉݃ݒ௠௔௫ ൅ 1

2ൗ ௠௔௫ݒܣௗܥߩ
ଷ൯ 

(3.4)

ாܲ,ଶ ൌ
1
்ߟ
ሺ݂݉݃ݒ௠௔௫ cos ߙ ൅ ௠௔௫ݒ݃݉ sin ߙ ൅ 1

2ൗ ௠௔௫ݒܣௗܥߩ
ଷሻ 

(3.5)
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Where ்ߟ is the powertrain efficiency, m is mass of the vehicle, ݃ is the gravitational 

acceleration, ݂  is the coefficient of rolling resistance, ݒଵ is the 6% grade speed, ߩ is the 

air density, Cd is the air drag coefficient, ܣ is the frontal area of the vehicle, ݒଵ is the 

mean cruise speed and ߙ is the grade degree and ݒ௠௔௫ is the maximum cruise speed. 

 

 

3.3.2.2 Electric Motor Constraints 

The peak power of the electric motor is calculated by the maximum acceleration 

constraint. Equation 3.6 represents the maximum size of the electric motor: 

ெܲ,௠௔௫ ൌ
1
௙ݐ2

݉ ௙ܸ
ଶ 

(3.6)

Here ݐ௙ is the time required to reach the final speed, ݉ is the mass of the vehicle and ௙ܸ is 

the final speed that is to be reached. 

 

On the other hand, the minimum power of the electric motor that is required for the 

vehicle to drive at a constant speed on a road with a gradient slope is shown by the 

following equation: 

ெܲ,௠௜௡ ൌ ଵݒ݂݃݉ cos ߙ ൅ ଵݒ݃݉ sin ߙ ൅ 1
2ൗ ଵଷ (3.7)ݒܣௗܥߩ

where m is mass of the vehicle, ݃ is the gravitational acceleration, ݂  is the coefficient of 

rolling resistance, ݒଵ is the 6% grade speed, ߙ is the grade degree, ݒଵ is the mean cruise 

speed, ߩ is the air density, Cd is the air drag coefficient and ܣ is the frontal area of the 

vehicle. 

 

 

3.3.2.3 Energy Storage System Constraints 

The energy storage system is the only power resource for the electric motor. 

Therefore, these two components are bounded to each other in terms of their power 

requirements. The electric motor’s minimum voltage requirement determines the 

minimum number of battery modules. 



29 
 

௠௜௡ܯܤܰ ൌ ݀݊ݑ݋ܴ ቆ
ܷெ,௠௜௡

ܷ௕,௠௜௡
ቇ 

(3.8)

Here ܷெ,௠௜௡ is the minimum voltage of the motor, ܷ௕,௠௜௡	is the minimum voltage of the 

battery module. ܴ݀݊ݑ݋ is the function rounds up the value to the upper integer. 

 

The maximum number of battery modules is derived from the peak power of the 

electric motor.     

௠௔௫ܯܤܰ ൌ
ெܲ,௠௔௫

்ߟ௣݉ெܦ
 

(3.9)

In Equation 3.9, ܦ௣ is the specific power of the battery module, ݉ெ is the mass of the 

battery module, ்ߟ is the efficiency. 
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4 SIMULATION 

 

 

The optimization problem in this research is solved using PSAT tool along with 

MATLAB. This chapter is a detailed description of how the simulation structure of the 

problem is constructed and the results acquired through the simulation. First section will 

describe the PSAT/Simulink modeling structure and explains the Matlab script 

constructed for the optimization tool, which also makes the optimization tool work along 

with the PSAT software, and in the second section the results of the simulation are 

illustrated. After finding the optimal sizes of the components a comparison is made with 

the baseline vehicle model and the optimal sized vehicle in terms of performance values 

and fuel consumption. 

 

 

4.1 Simulation Model 

 

 

4.1.1 PSAT/Simulink 

The mathematical model of the vehicle that was explained in the previous chapters of 

this thesis is constructed as block diagrams in PSAT software [15]. PSAT is a powerful 

simulation tool based on Matlab/Simulink. The default Toyota Prius vehicle model in 

PSAT is used in this research to compute major parameter values that are used in the 

optimization tool. Since Toyota Prius is a HEV, the model had to be modified to 

represent a PHEV model. Figure 4.1 shows the block diagram configuration of the 

vehicle model.  
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4.2 Simulation Results 

This constrained optimization problem is solved via the modified PSO algorithm 

mentioned in the previous sections. The extremes of the problem and the objective 

function are implemented together into the code. Therefore, in each iteration, for each 

particle, the simulation runs in PSAT tool according to the parameter values that have 

been computed via the PSO tool depending on the ݃ݐݏ݁ܤ and ݐݏ݁ܤ݌ values and velocity 

calculations of the PSO. As the result of the simulation that is done over the PSAT 

model, the fuel consumption and some other parameters are calculated. The objective 

function value is computed. This loop continuously repeated until the particles converge 

to the optimal solution point. Next subsection describes the optimization problem and 

simulation setup. The results are presented in the second subsection of this section. 

 

 

4.2.1 Simulation Setup 

The initial configuration of the vehicle is very similar to the powertrain configuration 

of 2008 Toyota Prius, the baseline specification parameters of the vehicle model are 

shown in the below table that was explained in the Problem Formulation chapter in detail: 

 

Table 4.1 Initial powertrain specs 

Component Model 

Generator 52 kW (peak) PM Motor 

Energy Storage 5 kWH Li Ion Battery 

Motor  50 kW PM Motor 

Gearbox Planetary Gear 

Engine 57 kW  Engine 

 

The values of the boundaries for the objective function variables, which are 

calculated via dynamic equations of the performance requirements as explained in detail 

in Chapter 3, are shown in Table 4.2. 
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Table 4.2 Boundary values for the constraints 

Component Lower Upper  Unit 

 ெܲ 30 75 kW 

 ாܲ 40 85 kW 

 - 20 6 ܯܤܰ

 

Since P/HEVs’ major focus is urban driving, the simulations are driven for The EPA 

Urban Dynamometer Driving Schedule (UDDS) for 5 times consecutively. The UDDS 

drive cycle is of 7.45 miles and 1369 seconds duration. Table 4.3 shows the 

characteristics of this specific drive cycle and the following figure is a vehicle speed 

(mph) vs. time (seconds) plot of the UDDS cycle (the velocity profile over time plot of 

the UDDS cycle): 

 

Table 4.3 UDDS cycle characteristics 

 Max Average Stand. Dev. Unit 

Speed  56.7 19.57 14.69 mph 

Acceleration 1.4752 0.505 0.45 m/s2 
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Figure 1.1 UDDS drive cycle velocity profile over time 
 

As described in detail in the Particle Swarm Optimization section of the Problem 

Formulation chapter, PSO tool needs some parameter values to be determined as 

explained in the section. The following table represents the values of these PSO tool 

variables.  

 

Table 4.4 PSO tool parameter values 

Parameter Value 

c1 2.6 

c2 1.5 

w 0.6 

Population Size (# of particles) 10 

Maximum iteration number 30 
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The values of c1, c2 and w parameters are determined by trial and error after running 

vast number of simulations. Population size and the maximum iteration numbers are 

restricted because of extremely long simulation hours. However, the advantages of 

having more particles are explained and examined in the recommendations section of this 

thesis. 

 

 

4.2.2 Results 

 

Table 4.5 Comparison of the component sizes and results 

Parameter PSAT Optimal unit 

 ெܲ 52 58 kW 

 ாܲ 57 51 kW 

 - 9 7 ܯܤܰ

FC 103.52 134.78 mpg 

CO 0 0 g/mile 

NOx 0 0 g/mile 

HC 0 0 g/mile 

CO2 86.2 74.8 g/mile 

 

In order to validate the configuration that was found through the optimization 

process, the default model and the optimized model are simulated in PSAT. Table 4.5 

also shows the comparison of these two configurations and their performance results. The 

default PSAT configuration simulation results are obtained via five consecutive UDDS 

cycles as well with the component sizes that are determined in PSAT default. 
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5 CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1 Conclusions 

The gradient free algorithm, e.g., the particle swarm optimization was used to 

determine the optimal configuration of the component sizes to achieve a better fuel 

economy and emission levels. Therefore, a simplified model of a power split plug-in 

hybrid electric vehicle powertrain was developed for a plug-in hybrid electric vehicle in 

PSAT. This simplified model was used along with PSO algorithm to determine the 

optimal sizes of the major components of the vehicle such as, engine power, motor 

power, and battery energy capacity, constrained by the performance requirements. The 

computed optimum component sizes were then implemented on the PSAT model. The 

simulation results from this new configuration were then compared with those from the 

default PSAT model configuration. 

  

The results show a significant improvement in the fuel economy, almost 30%, of the 

vehicle with the components that are sized through PSO optimization algorithm 

compared to the default configuration of the vehicle model. Thus, the main objective of 

the study, i.e., enhancing the fuel economy, has been achieved. However, since, the 

measurements of the emission levels are done after the catalytic converter the values of 

pollutant emissions are significantly too low to compare. 
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5.2 Recommendations for Future Work 

 Since the simulation time was significantly long, the optimization problem has been 

restricted to some certain amount of iterations and parameter values. Therefore, for 

further enhancement of the system, number of iterations and number of particles that are 

searching for the global extremes of the scheme can be increased and thus it might be 

possible to further refine the configuration of the PHEV components.  

  

Furthermore, by implementing different control algorithms to the vehicle model a 

comparison can be made between the baseline models and the optimized component 

configurations, also, another comparison amongst each other might lead to a better 

approach in terms of finding better-tuned component sizes. 

  

Last but not least, there are various kinds of gradient free optimization 

methodologies, because of the time restrictions and long simulation times, PSO assumed 

to work better than those other methodologies on PHEV powertrain component sizing 

systems by researching on the previous work done by different researchers. However, a 

better practice would be applying those optimization tools on the system and comparing 

them with PSO results. This might provide more confidence in the algorithm to choose 

and ensure the most proper optimization tool for such systems. 
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Appendix A  Matlab Script 

 

 

fcn=@my_function; 
clear all 
load 5UDDS_PSAT_sim.mat 
max_iter=30; 
PSAT_step_time=0.1; 
num_p = 10; 
num_cyc=5; 
w=0.3; 
for ii = 1:num_p, 
  x(1,ii,1)=15+40.*rand; 
  x(2,ii,1)=30000+55000.*rand; 
  x(3,ii,1)=30000+50000.*rand; 
  v(1,ii,1)=15+60.*rand; 
  v(2,ii,1)=30000+55000.*rand; 
  v(3,ii,1)=20000+50000.*rand; 
  pbest_pos(:,ii)=x(:,ii,1); 
  %Change_Vars(x(1,ii,1),x(2,ii,1),x(3,ii,1)); 
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 load 5UDDS_PSAT_sim.mat 
  %% Changing Parameter Values Function 
%% Files to Run 
ess_li_25_616_A123 
ess_calculation 
ess_cap_erg2pwr_ratio_s_lin 
ess.scale.cap_max_des =x(1,ii,1) ;%%%%%%%%%%%%%%%%%%%%%xls read 
addition here 
ess_cap_erg2pwr_ratio_s_lin 
%%ess_old_mass=... 
%%num of battery modules 
  
%%% ENG variable change sequence 
eng_si_1497_57_US_04Prius 
  
eng_old_mass=eng.init.block_mass+eng.init.tank_mass+eng.init.radiator_m
ass; 
 eng_calculation 
eng_s_lin 
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eng.scale.pwr_max_des = x(2,ii,1);%%%%%%%%%%%%%%%%%%%xls read addition 
here 
eng_s_lin 
  
%%% Motor variable change sequence 
mc_pm_25_50_prius 
  
mc_old_mass=mc.init.motor_mass+mc.init.controller_mass; 
  
mc_pre_calculation 
mc_calculation 
mc_s 
mc.scale.pwr_max_des =x(3,ii,1); %%%%%%%%%%%%%%%%%%%%xls read addition 
here 
mc_s 
  
% %%% Change the total mass of the vehicle 
eng_new_mass=(eng.init.block_mass+eng.init.tank_mass+eng.init.radiator_
mass); 
mc_new_mass=(mc.init.motor_mass+mc.init.controller_mass); 
veh.init.mass=veh.init.mass+(eng_new_mass-eng_old_mass)+(mc_new_mass-
mc_old_mass); 
%% Re-Evaluate Controller files 
%%% Propelling 
p_stf_split_best_eng_MY04_US_prius 
%%% Braking 
b_stf_split_best_eng 
%% Driveline Calculation 
driveline_s 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
  %sim('PSAT_mdl', [0:0.05:psat.global.gbl_stop_time]); 
   
  sim('PSAT_mdl', [0:0.01:1369*num_cyc]); 
          
        %%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&%% 
         
  
        gal_cons=0.264172052*(max (eng_fuel_cum_simu)/0.749) ;%% 
gallons consumed 
  
  
        mil_cyc=11990*0.000621371192*num_cyc;%%miles driven 
  
        if gal_cons==0 
            FC_cyc=190; 
        else 
        FC_cyc=mil_cyc/gal_cons; 
        end 
        if FC_cyc>=190 
            FC_cyc=190; 
        end 
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%%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&%% 
   
  f(ii,1)=190/FC_cyc+x(1,ii,1)/55+x(2,ii,1)/85000+x(3,ii,1)/80000; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% UPDATEEEEEE 
end 
pbest(:,1)=f(:,1);%%%pbest(:, this dimension remain 1 always) 
[gbest,l]=min(f(:,1));gbest_pos(:,1)=x(:,l,1); 
for  kk= 2:max_iter, 
    for ii=1:num_p, 
        % finding new positions for each type 
        for d=1:3  
            x(d,ii,kk)=x(d,ii,kk-1)+v(d,ii,kk-1); 
            if x(1,ii,kk)<=0  
               x(1,ii,kk)=1; 
            end 
            if x(2,ii,kk)<=0 
               x(2,ii,kk)=1000; 
            end 
             
            if x(3,ii,kk)<=0 
               x(3,ii,kk)=1000; 
            end 
        end 
        v(1,ii,kk)=w.*(v(1,ii,kk-1)+2*rand(1)*(pbest_pos(1,ii)-
x(1,ii,kk-1))+2*rand(1)*(gbest_pos(1,kk-1)-x(1,ii,kk-1))); 
        v(2,ii,kk)=w.*(v(2,ii,kk-1)+2*rand(1)*(pbest_pos(2,ii)-
x(2,ii,kk-1))+2*rand(1)*(gbest_pos(2,kk-1)-x(2,ii,kk-1))); 
        v(3,ii,kk)=w.*(v(3,ii,kk-1)+2*rand(1)*(pbest_pos(3,ii)-
x(3,ii,kk-1))+2*rand(1)*(gbest_pos(3,kk-1)-x(3,ii,kk-1))); 
         
        %Change_Vars (x(1,ii,kk),x(2,ii,kk),x(3,ii,kk)); 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 load 5UDDS_PSAT_sim.mat 
            %% Changing Parameter Values Function 
%% Files to Run 
ess_li_25_616_A123 
ess_calculation 
ess_cap_erg2pwr_ratio_s_lin 
ess.scale.cap_max_des =x(1,ii,kk) ;%%%%%%%%%%%%%%%%%%%%%xls read 
addition here 
ess_cap_erg2pwr_ratio_s_lin 
%%ess_old_mass=... 
%%num of battery modules 
  
%%% ENG variable change sequence 
eng_si_1497_57_US_04Prius 
  
eng_old_mass=eng.init.block_mass+eng.init.tank_mass+eng.init.radiator_m
ass; 
  
eng_calculation 
eng_s_lin 
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eng.scale.pwr_max_des = x(2,ii,kk);%%%%%%%%%%%%%%%%%%%xls read addition 
here 
eng_s_lin 
  
%%% Motor variable change sequence 
mc_pm_25_50_prius 
  
mc_old_mass=mc.init.motor_mass+mc.init.controller_mass; 
  
mc_pre_calculation 
mc_calculation 
mc_s 
mc.scale.pwr_max_des =x(3,ii,kk); %%%%%%%%%%%%%%%%%%%%xls read addition 
here 
mc_s 
  
%%% Change the total mass of the vehicle 
new_mass=(eng.init.block_mass+eng.init.tank_mass+eng.init.radiator_mass
+mc.init.motor_mass+mc.init.controller_mass); 
veh.init.mass=veh.init.mass+new_mass-(eng_old_mass+mc_old_mass); 
%% Re-Evaluate Controller files 
%%% Propelling 
p_stf_split_best_eng_MY04_US_prius 
%%% Braking 
b_stf_split_best_eng 
%% Driveline Calculation 
driveline_s 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
        %sim('PSAT_mdl', [0:0.05:psat.global.gbl_stop_time]); 
        sim('PSAT_mdl', [0:0.01:1369*num_cyc]); 
        ess_soc_simu %%to check if the variable is changing every 
iteration 
        %%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&%% 
         
  
        gal_cons=0.264172052*(max (eng_fuel_cum_simu)/0.749) ;%% 
gallons consumed 
  
  
        mil_cyc=11990*0.000621371192*num_cyc;%%miles driven 
  
        if gal_cons==0 
            FC_cyc=190; 
        else 
        FC_cyc=mil_cyc/gal_cons; 
        end 
        if FC_cyc>=190 
            FC_cyc=190; 
        end 
        %%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&%% 
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f(ii,kk)=190/FC_cyc+x(1,ii,1)/55+x(2,ii,1)/85000+x(3,ii,1)/80000; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% UPDATEEEEEE,NORMALIZE 
         
        if pbest(ii,1)> f(ii,kk) 
            pbest(ii,1)=f(ii,kk); 
            pbest_pos(:,ii)=x(:,ii,kk); 
        end 
    end 
    [gbest,l]=min(pbest(:,1));%%%%%%%%%%%%GLOBAL BEST IS THE BEST AMONG 
THE PBEST VALUES, SINCE THE PBEST VALUES ARE STORING THE BEST EACH 
PARTICLE FOUND SO FAR 
    gbest_pos(:,kk)=pbest_pos(:,l); 
end 
  
  



52 
 

Appendix B  Objective Function Values 

  

 

x(:,:,1) = 

  1.0e+004 * 

  Columns 1 through 6 

    0.0053    0.0018    0.0029    0.0052    0.0016    
0.0027 
    5.5336    6.1931    8.2896    6.3140    5.5967    
6.5776 
    4.4382    4.4351    7.7678    6.5107    6.2254    
7.4570 

  Columns 7 through 10 

    0.0051    0.0041    0.0040    0.0021

    4.4109    6.0055    8.4235    7.4601

    7.8340    4.2566    4.0358    5.3825

x(:,:,2) = 

  1.0e+005 * 

  Columns 1 through 6 

    0.0007    0.0005    0.0006    0.0011    0.0005    
0.0009 
    1.1736    1.3180    1.5515    1.1432    1.1445    
1.0732 
    0.7204    1.0727    1.2846    0.9768    0.9454    
1.1452 

  Columns 7 through 10 

    0.0010    0.0006    0.0010    0.0004

    0.8320    1.0289    1.6298    1.5277

    1.3965    0.8062    0.8397    1.0558
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x(:,:,3) = 

  1.0e+005 * 

  Columns 1 through 6 

    0.0006    0.0007    0.0006    0.0012    0.0006    
0.0011 
    1.3612    1.5276    1.7468    1.2961    1.3306    
1.1949 
    0.8032    1.2614    1.2530    0.9708    0.9476    
1.1048 

  Columns 7 through 10 

    0.0012    0.0005    0.0011    0.0005

    0.9830    1.1646    1.8173    1.7441

    1.4190    0.9270    0.9896    1.1647

x(:,:,4) = 

  1.0e+005 * 

  Columns 1 through 6 

    0.0003    0.0003    0.0004    0.0005    0.0004    
0.0007 
    0.9884    1.0946    1.5917    1.0184    1.1626    
1.0121 
    0.6563    0.7525    0.9140    0.4836    0.7923    
0.9522 

  Columns 7 through 10 

    0.0009    0.0003    0.0009    0.0004

    0.8408    0.8488    1.3817    1.3055

    0.8536    0.6585    0.7185    0.9167

x(:,:,5) = 
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  1.0e+005 * 

  Columns 1 through 6 

    0.0002    0.0000    0.0001    0.0000    0.0001    
0.0005 
    0.3978    0.7032    0.6357    0.3394    0.7706    
0.7988 
    0.3517    0.3681    0.2497    0.0638    0.4894    
0.4557 

  Columns 7 through 10 

    0.0002    0.0000    0.0001    0.0002

    0.3781    0.3274    1.0679    0.3938

    0.0907    0.2711    0.2564    0.3119

x(:,:,6) = 

  1.0e+004 * 

  Columns 1 through 6 

    0.0015    0.0001    0.0001    0.0001    0.0001    
0.0006 
    0.0568    2.4570    0.1000    0.5457    2.1168    
4.2054 
    1.5540    0.1000    0.1000    0.1000    2.9378    
1.9948 

  Columns 7 through 10 

    0.0001    0.0001    0.0001    0.0001

    0.1000    0.1000    6.8828    0.1000

    0.1000    0.1000    0.1000    0.1000

x(:,:,7) = 

  1.0e+004 * 
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  Columns 1 through 6 

    0.0023    0.0001    0.0001    0.0024    0.0001    
0.0001 
    0.1000    0.9256    0.1000    1.1316    0.1000    
2.4824 
    1.6778    0.1000    0.6395    5.2664    2.2732    
2.6590 

  Columns 7 through 10 

    0.0001    0.0025    0.0001    0.0001

    0.1000    0.8336    3.5347    0.6699

    1.6111    0.1000    0.9652    0.0197

x(:,:,8) = 

  1.0e+005 * 

  Columns 1 through 6 

    0.0003    0.0001    0.0001    0.0005    0.0001    
0.0000 
    0.4241    0.4296    0.6867    0.6333    0.2733    
0.2937 
    0.3454    0.3325    0.2549    1.1599    0.2995    
0.5738 

  Columns 7 through 10 

    0.0000    0.0004    0.0003    0.0001

    0.2460    0.3623    0.2597    0.5128

    0.8559    0.0417    0.1926    0.3834

x(:,:,9) = 

  1.0e+005 * 

  Columns 1 through 6 

    0.0004    0.0002    0.0003    0.0006    0.0002    



56 
 

0.0001 
    0.9824    1.0338    1.0395    1.1377    0.6920    
0.5359 
    0.5290    0.7478    0.8223    1.3310    0.4120    
0.7601 

  Columns 7 through 10 

    0.0001    0.0005    0.0006    0.0002

    0.7488    0.9101    0.4685    1.2130

    1.2411    0.2726    0.3159    0.8373

x(:,:,10) 
= 

  1.0e+005 * 

  Columns 1 through 6 

    0.0005    0.0003    0.0004    0.0005    0.0003    
0.0003 
    1.2283    1.3732    1.1573    1.2839    0.9686    
0.7633 
    0.6516    0.9399    1.1067    0.8764    0.6056    
0.8832 

  Columns 7 through 10 

    0.0001    0.0004    0.0006    0.0002

    1.1913    1.2496    1.0057    1.4880

    1.2499    0.6542    0.4171    1.0606

x(:,:,11) 
= 

  1.0e+005 * 

  Columns 1 through 6 

    0.0005    0.0003    0.0004    0.0003    0.0003    
0.0004 
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    1.0562    1.1999    1.0709    1.0394    1.0233    
0.9488 
    0.6655    0.7551    1.1635    0.6641    0.7268    
0.7960 

  Columns 7 through 10 

    0.0003    0.0003    0.0005    0.0003

    1.1197    1.2153    1.2649    1.2276

    1.0119    0.8826    0.5308    0.9645

x(:,:,12) 
= 

  1.0e+005 * 

  Columns 1 through 6 

    0.0003    0.0002    0.0003    0.0001    0.0002    
0.0004 
    0.6396    0.6992    0.8159    0.5514    0.8079    
0.9118 
    0.6119    0.3437    0.6362    0.4079    0.7299    
0.6355 

  Columns 7 through 10 

    0.0004    0.0003    0.0004    0.0003

    0.3739    0.9635    1.1283    0.8182

    0.4954    0.8340    0.5677    0.5098

x(:,:,13) 
= 

  1.0e+004 * 

  Columns 1 through 6 

    0.0028    0.0006    0.0020    0.0013    0.0015    
0.0026 
    0.7037    2.4423    7.2063    3.2813    3.2017    
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8.3998 
    3.9732    0.1000    2.1176    2.4012    5.9819    
4.7682 

  Columns 7 through 10 

    0.0044    0.0026    0.0038    0.0019

    0.1000    6.6168    5.3296    3.0218

    0.1000    6.4864    4.7369    2.1458

x(:,:,14) 
= 

  1.0e+004 * 

  Columns 1 through 6 

    0.0021    0.0001    0.0007    0.0019    0.0009    
0.0001 
    0.1000    0.9022    6.6185    2.9514    1.1440    
5.5540 
    1.8720    0.1000    0.6317    2.8767    4.9581    
4.0967 

  Columns 7 through 10 

    0.0040    0.0029    0.0028    0.0013

    0.1000    2.4410    2.0609    1.0194

    0.1000    2.1502    3.1128    1.4087

x(:,:,15) 
= 

  1.0e+004 * 

  Columns 1 through 6 

    0.0022    0.0010    0.0005    0.0028    0.0007    
0.0001 
    2.6734    2.7938    6.0653    3.3966    0.8579    
4.1131 
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    1.4978    1.5604    2.7878    5.3828    4.2651    
3.7874 

  Columns 7 through 10 

    0.0036    0.0032    0.0018    0.0011

    4.6060    0.6307    1.8291    1.0546

    2.6114    0.1000    2.3614    2.5748

x(:,:,16) 
= 

  1.0e+004 * 

  Columns 1 through 6 

    0.0038    0.0027    0.0017    0.0035    0.0012    
0.0006 
    5.5708    9.2767    5.8977    6.5851    3.2401    
4.4262 
    3.1471    3.6535    8.2301    7.5794    4.5627    
4.8890 

  Columns 7 through 10 

    0.0027    0.0036    0.0017    0.0012

    7.8363    2.5459    5.1950    5.6604

    6.6198    0.6193    2.8996    4.5841

x(:,:,17) 
= 

  1.0e+005 * 

  Columns 1 through 6 

    0.0005    0.0004    0.0003    0.0005    0.0002    
0.0002 
    0.9045    1.3239    0.6444    1.0401    0.7290    
0.5534 
    0.4180    0.5542    1.3588    0.8376    0.5647    
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0.6289 

  Columns 7 through 10 

    0.0002    0.0003    0.0002    0.0002

    0.9380    0.6539    0.9314    0.8235

    1.0512    0.3313    0.4152    0.6269

x(:,:,18) 
= 

  1.0e+005 * 

  Columns 1 through 6 

    0.0005    0.0004    0.0004    0.0005    0.0002    
0.0003 
    1.0329    1.1785    0.7437    1.1326    0.9298    
0.7656 
    0.5538    0.6478    1.3274    0.7021    0.6309    
0.7798 

  Columns 7 through 10 

    0.0003    0.0003    0.0002    0.0003

    0.8544    0.8367    1.1305    0.9550

    1.1819    0.6531    0.5166    0.6913

x(:,:,19) 
= 

  1.0e+005 * 

  Columns 1 through 6 

    0.0004    0.0003    0.0004    0.0004    0.0002    
0.0005 
    0.7874    0.8261    0.7781    0.9621    0.9150    
0.8797 
    0.6169    0.5987    0.7941    0.3825    0.6595    
0.8555 
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  Columns 7 through 10 

    0.0004    0.0002    0.0003    0.0003

    0.6675    0.8747    0.9838    0.9278

    1.0312    0.7938    0.5488    0.6304

x(:,:,20) 
= 

  1.0e+004 * 

  Columns 1 through 6 

    0.0025    0.0019    0.0026    0.0025    0.0021    
0.0043 
    4.7361    3.5996    7.3021    5.9519    6.4451    
8.3905 
    5.5105    4.8872    3.2775    1.7398    5.7131    
7.2613 

  Columns 7 through 10 

    0.0045    0.0022    0.0037    0.0028

    4.6452    7.3144    7.1950    7.7790

    4.5810    6.6383    5.1960    4.0500

x(:,:,21) 
= 

  1.0e+004 * 

  Columns 1 through 6 

    0.0026    0.0010    0.0018    0.0018    0.0016    
0.0030 
    2.5110    0.7719    6.6023    3.4460    4.1298    
6.6190 
    3.9369    3.5566    1.2057    1.9836    4.3967    
5.0163 
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  Columns 7 through 10 

    0.0032    0.0021    0.0040    0.0019

    3.6483    6.3622    4.8809    5.7762

    0.1000    5.0038    3.7335    2.9322

x(:,:,22) 
= 

  1.0e+004 * 

  Columns 1 through 6 

    0.0038    0.0006    0.0015    0.0020    0.0012    
0.0006 
    1.9473    2.4096    5.9252    2.8079    3.3102    
5.1312 
    2.4113    2.8476    1.3192    3.8939    3.9785    
3.5000 

  Columns 7 through 10 

    0.0016    0.0021    0.0036    0.0008

    3.3524    5.1983    3.9364    4.5548

    0.1000    2.2306    2.8729    2.9919

x(:,:,23) 
= 

  1.0e+004 * 

  Columns 1 through 6 

    0.0052    0.0008    0.0016    0.0034    0.0011    
0.0001 
    4.4048    5.8298    6.6058    3.6845    3.7462    
4.6028 
    2.0985    3.0054    3.1139    7.7027    4.4173    
3.8533 

  Columns 7 through 10 
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    0.0011    0.0027    0.0030    0.0004

    4.5906    4.6610    5.0912    4.8002

    5.2192    1.1892    2.9158    4.9480

x(:,:,24) 
= 

  1.0e+005 * 

  Columns 1 through 6 

    0.0006    0.0001    0.0002    0.0004    0.0001    
0.0000 
    0.7609    0.9384    0.7011    0.5574    0.4768    
0.4904 
    0.3910    0.3463    0.5140    1.0415    0.4722    
0.5114 

  Columns 7 through 10 

    0.0002    0.0003    0.0002    0.0001

    0.6572    0.5214    0.7752    0.6014

    1.2340    0.1139    0.4286    0.5960

x(:,:,25) 
= 

  1.0e+005 * 

  Columns 1 through 6 

    0.0005    0.0002    0.0003    0.0004    0.0002    
0.0001 
    0.8836    1.0760    0.7990    0.7770    0.5993    
0.6249 
    0.5512    0.4732    0.7897    1.0876    0.5649    
0.7043 

  Columns 7 through 10 
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    0.0005    0.0004    0.0002    0.0002

    0.7865    0.6169    0.9404    0.7913

    1.4917    0.2936    0.5249    0.6115

x(:,:,26) 
= 

  1.0e+005 * 

  Columns 1 through 6 

    0.0004    0.0003    0.0003    0.0004    0.0002    
0.0003 
    0.7906    1.0041    0.8429    0.8568    0.7150    
0.7526 
    0.6408    0.5808    0.9622    0.6845    0.6316    
0.7565 

  Columns 7 through 10 

    0.0007    0.0004    0.0002    0.0003

    0.6854    0.6745    0.9161    0.8891

    1.0375    0.6321    0.5510    0.5381

x(:,:,27) 
= 

  1.0e+004 * 

  Columns 1 through 6 

    0.0019    0.0026    0.0029    0.0037    0.0022    
0.0041 
    5.8303    8.6117    8.1272    8.2314    7.3999    
8.0688 
    5.9048    5.9168    8.4716    2.5952    6.4889    
7.7379 

  Columns 7 through 10 

    0.0073    0.0035    0.0033    0.0038
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    5.7577    6.8929    7.5235    8.3699

    4.3998    7.8654    5.0191    4.0551

x(:,:,28) 
= 

  1.0e+004 * 

  Columns 1 through 6 

    0.0013    0.0023    0.0026    0.0036    0.0017    
0.0037 
    3.7344    6.0664    6.9169    5.7993    6.2926    
7.2287 
    4.1373    5.2432    6.9601    0.3856    6.2907    
6.7329 

  Columns 7 through 10 

    0.0070    0.0025    0.0044    0.0022

    4.2966    6.5288    6.0551    7.2746

    1.1081    6.4992    3.7342    3.4758

x(:,:,29) 
= 

  1.0e+004 * 

  Columns 1 through 6 

    0.0013    0.0017    0.0023    0.0037    0.0012    
0.0027 
    3.0764    4.3263    6.0803    3.5986    4.9030    
5.9897 
    1.9046    4.3962    5.5071    2.4690    5.9130    
5.8370 

  Columns 7 through 10 

    0.0030    0.0021    0.0042    0.0000

    3.4889    6.0882    5.6682    5.9125
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    1.2838    3.3244    2.7654    3.5205

x(:,:,30) 
= 

  1.0e+004 * 

  Columns 1 through 6 

    0.0032    0.0011    0.0021    0.0033    0.0010    
0.0009 
    3.5644    3.9379    5.5450    3.1582    4.3037    
5.1214 
    1.4304    3.6035    4.6426    6.0252    5.7555    
5.1504 

  Columns 7 through 10 

    0.0000    0.0019    0.0040    0.0001

    3.3327    5.6521    6.4933    5.1792

    3.6137    0.9583    2.8141    4.1345
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